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MOTIVATION

Electronic structure is the key quantity to materials 
properties and related phenomena:
Mechanical, thermal, electrical, optical,... .

Conventional ab initio / first-principles type methods
• suffer from laborious description of electron–

electron correlations (CI, MCHF, DFT-functionals)
• typically ignore nuclear quantum and thermal 

dynamics and coupling of electron–nuclei 
dynamics (Born–Oppenheimer approximation)

• give the zero-Kelvin description, only.
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PATH-INTEGRAL DESCRIPTION OF 
QUANTUM DYNAMICS

Time evolution of the wave function is 
laborious and ”challenging”:

• path sampling
• interference of paths 
• . . .

Propagation in imaginary time is in better 
control.  It can be used as formulation 
quantum statistical physics, and thus, finding 
the finite temperature electronic structure.
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Feynman–Hibbs, Quantum Mechanics and Path Integrals, (McGraw-Hill, 1965)
Feynman R.P., Rev. Mod. Phys. 20, 367–387 (1948)
Feynman R.P., Statistical Mechanics (Westview, Advance Book Classics, 1972) 
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CLASSICAL PATH 

Let us consider particle dynamics from a to b.
Lagrangian formulation of classical mechanics for 
finding the path/trajectory leads to equations of 
motion from minimization (extremum) of action 

                               where the Lagrangian L = T–V.

                 =>                                =>

For example, the classical action of the free-particle 
is
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QUANTUM PATH 

Usually, the most probable quantum path is the 
classical one, but other paths contribute, too, with 
a certain probability.  Quantum probability of the 
particle propagation from a to b is
  P(b,a) = |K(b,a)|2 ,
the absolute square of the probability amplitude K.
The probability amplitude is the sum over all 
oscillating phase factors    of the paths xab as

                              
 where the phase is proportional to the action
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PATH-INTEGRAL

Now, let us define the sum over all paths as a path-integral

 
We call this ”kernel” or ”propagator” or ”Green’s function”.
In terms of stationary eigenstates it can be written as

The kernel satisfies the free-particle Schrödinger equation in 
space-time {xb,tb}.
For example, the free-particle propagator takes now the form
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MIXED STATE DENSITY MATRIX

Considering all states          of the particle, for the probability p(x) of 
finding the particle/system in configuration space at x, we have

Now, define the mixed state density matrix (in position presentation)

                                                                        (                )
Thus, we find

and normalization implies                     Expectation values evaluated from
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1
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β =
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PATH-INTEGRAL EVALUATION OF 
DENSITY MATRIX

Now, compare

                                                      and

in equilibrium (time independent hamiltonian) and tb > ta.
Replacing  (tb – ta) = u  by  –iℏβ  or β = i(tb – ta)/ℏ  (imaginary time period) 

we obtain ρ(b,a), for which                                     Cf.

for a time independent hamiltonian.  Thus, we can evaluate the 
density matrix from a path-integral similarly

where the imaginary time action is
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MONTE CARLO SAMPLING OF
IMAGINARY TIME PATHS

For the density operator we can write

if the kinetic and potential energies in the hamiltonian
      H = T + V
commute.  This becomes exact at the limit of imaginary time period goes to 
zero, the high temperature limit, because the potential energy approaches 
constant in position representation for each imaginary time step.
Thus, we can write

where
                   ,      
and  M  is called the Trotter number.
This allows numerical sampling of the imaginary time 
paths with a Monte Carlo method.
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ρ(β) = e−βH = e−β/2He−β/2H ,

ρ(r0 , rM;β) = ρ(r0 , r1; τ)ρ(r1, r2; τ) ...ρ(rM−1, rM; τ)∫∫∫ dr1dr2 ...drM−1,

τ =β /M β =
1
kT
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EVALUATION WITH MONTE CARLO

Monte Carlo allows straightforward numerical 
procedure for evaluation of multidimensional 
integrals.
Metropolis Monte Carlo

• NVT (equilibrium) 
 ensemble
• now yields mixed state
 density matrix with 
 almost classical
 transparency

10

Metropolis N. et al., J. Chem. Phys. 
21, 1087, (1953).

Ceperley D.M., Rev. Mod. Phys. 67, 279, (1995) and in Monte Carlo and ...   
       (Eds. K. Binder and G. Ciccotti, Editrice Compositori, Bologna, Italy 1996) 
Storer R.G., J. Math. Phys. 9, 964, (1968) 
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A-FEW-QUANTUM-PARTICLES 
SYSTEMS

• A COUPLE OF ELECTRONS IN QUANTUM DOTS
• M. Leino & TTR, Physica Scripta T114, 44 (2004)
• M. Leino & TTR, Few Body Systems 40, 237 (2007)

• HYDROGEN ATOMS ON Ni SURFACE
• M. Leino, J. Nieminen & TTR, Surf. Sci. 600,1860 (2006)
• M. Leino, I. Kylänpää & TTR, Surf. Sci. 601, 1246 (2007)

• ELECTRONS AND NUCLEI QUANTUM DYNAMICS
• I. Kylänpää, M. Leino & TTR, PRA 76, 052508 (2007)
• I. Kylänpää, TTR, J.Chem.Phys. 133, 044312 (2010)
• I. Kylänpää, TTR, J.Chem.Phys. 135, 104310 (2011)

• THREE AND FOUR PARTICLE MOLECULES
• I. Kylänpää, TTR, PRA 80, 024504, (2009)
• I. Kylänpää, TTR and DM. Ceperley, PRA 86, 052506, (2012)
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QUANTUM STATISTICAL PHYSICS PATH 
INTEGRAL MONTE CARLO APPROACH

 An ab initio electronic structure approach with
• FULL ACCOUNT OF CORRELATION, the 

van der Waals interaction, for example!
• TEMPERATURE DEPENDENCE
• BEYOND BORN–OPPENHEIMER 

APPROXIMATION
• INTERPRETATION OF EQUILIBRIUM 

DISSOCIATION REACTION

• Without the exchange interaction, now

12
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SIZE AND TEMPERATURE SCALES
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QUANTUM / CLASSICAL 
APPROACHES TO DYNAMICS

 

14

time 
dependent

T > 0
equilibrium

T = 0

MOLECULAR

Wave packet 
approaches !

TDDFT

Car–
Parrinello 

and

DYNAMICS

Metropolis 
Monte Carlo Rovibrational

!
ab initio 
MOLDY

Molecular 
mechanics

approaches

DMC

ab initio 
Quantum 

Chemistry / 
DFT / 

semiemp.

electronic 
dyn.:

nuclear dyn.:

 

Classical

 

Q

 Q

Q

Q Q

Classical



Department of Physics, TCOMP-EST WSTC, 20 Dec 2012Tapio Rantala:  QUANTUM AND THERMAL MOTION IN MOLECULES FROM ...

H3
+ MOLECULE

Quantum statistics of two electrons 
and three nuclei (five-particle 
system) as a function of 
temperature:

• Structure and energetics:
• quantum nature of nuclei
• pair correlation functions, 

contact densities, ...
• dissociation temperature

• Comparison to the data from 
conventional quantum chemistry.

15

e–

p+ p+

p+

e–

me, mp



Department of Physics, TCOMP-EST WSTC, 20 Dec 2012Tapio Rantala:  QUANTUM AND THERMAL MOTION IN MOLECULES FROM ...

TOTAL ENERGY:
FINITE NUCLEAR MASS AND ZERO-POINT ENERGY

Total energy 
of the H3+ ion 
up to the 
dissociation 
temperature.
Born–
Oppenheimer 
approximation, 
classical 
nuclei and 
quantum 
nuclei.

16
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MOLECULAR GEOMETRY AT LOW 
TEMPERATURE: ZERO-POINT MOTION

Internuclear distance.  
Quantum nuclei, classical 
nuclei, with FWHM

17

Snapshot from simulation, 
projection to xy-plane.  Trotter 
number 216.
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PARTICLE–PARTICLE CORRELATIONS: 
ELECTRON–NUCLEI COUPLING

Pair correlation functions.  
Quantum p (solid), 
classical p (dashed) and 
Born–Oppenheimer 
(dash-dotted).
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ENERGETICS AT HIGH TEMPERATURES: 
DISSOCIATION–RECOMBINATION

19

Total energy of the H3+ 
beyond dissociation 
temperature.
Lowest density,
mid density,
highest density
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DISSOCIATION–RECOMBINATION 
EQUILIBRIUM REACTION

The molecule and its 
fragments:

20

The equilibrium composition of 
fragments at about 5000 K.
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SOME THERMODYNAMICS

Expected total energy or internal energy is

                                  and                                 or                            (           )

All standard thermodynamic quantities and relations can be derived from 
the partition function Z or free energy F.

21

E =U =
1
Z

Ene
−βEn

n
∑ = kT2 ∂(lnZ)

∂T
=
∂(βF)
∂β

.

∂F
∂T

= −S

∂F
∂V

= −P F =U−TS

dU = −PdV+dQ

dQ = TdS

Z = e−βEn

n
∑ = e−βFE =U = −

1
Z
∂(Z)
∂β

F = − 1
β
lnZ β =
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kT
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PARTITION FUNCTION

 

22

Numerical integration 
of

gives the partition 
function.  
We use the boundary 
condition  Z(0) = 1.

lnZ(T) = lnZ(T1)+
E
kBT

2
T1

T

∫ dT
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FREE ENERGY
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The weighted least squares fit of the above energy func-
tion, Eq. (8), to our data for temperatures up to about 3900 K,
see Table I, gives the parameters,

a = 0.00157426,

b = 0.000132273,

c = −6.15622 × 10−6,

d = 0.00157430,

α = 269.410, and

D = a/b ≈ 11.9016.

In the fit, in addition to the (2SEM)−2 weights, we force the
first derivative of the energy with respect to the temperature to
be monotonically increasing up to 3900 K. The fit extrapolates
the 0 K energy to about 0.000 549EH above that of the para-
H+

3 , i.e., it gives an excellent match within the statistical error
estimate.

In Fig. 3, the function ln Z(T ) from Eq. (9) is shown in
the range 0 < T < 4000 K — the behavior of the model at
higher T is illustrated by the dashed line. Above 4000 K, the
three curves for different densities are obtained from those
shown in Fig. 1 by numerical integration of Eq. (7) as

ln Z(T ) = ln Z(T1) +
∫ T

T1

〈E〉
kBT 2

dT , (10)

where T1 = 500 K.
In Ref. 2, Neale and Tennyson (NT) have presented the

partition function ln Z(T ) based on a semi-empirical poten-
tial energy surface, see Fig. 3. The NT partition function has
conventionally been used in atmospheric models. The overall
shape is similar to the one of ours. However, the energy 〈E〉
evaluated from their fit tends to be systematically lower than
ours, although roughly within our 2SEM error limits. Thus,
the deviations are not visible in Fig. 1. The energy zero of the
NT fit, black dots in Figs. 1 and 3, is the same as ours in this
work, and thus, allows direct comparison in Fig. 1.

Also in Fig. 3, the difference due to the choice of the
J = 0 state as the zero reference is illustrated by the NT par-
tition function values, black pluses — the shape is notably af-
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FIG. 3. The molecular NV T ensemble ln Z(T ) from the energetics in Fig. 1
with the same notations. The blue solid line below 4000 K and its extrapo-
lation (dashed line) are from Eq. (9), whereas the curves for three densities
are from Eq. (10). The ln Z(T ) data (black pluses) and the fit (black dots)
of Ref. 2 are also shown. The black dots have the same zero energy as the
partition function of this work (see text).
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FIG. 4. Helmholtz free energy from Eq. (5) in the units of Hartree. Notations
are the same as in Fig. 3.

fected at low T , only. As mentioned above, already, the zero
reference of ln Z can be chosen differently.

Our low temperature partition function, Eq. (9), is close
to complete. With the PIMC approach, we implicitly include
all of the quantum states in the system with correct weight
without any approximations. This partition function is the best
one for the modeling of the low density H+

3 ion containing at-
mospheres, at the moment. However, it is valid up to the disso-
ciation temperature, only. As soon as the density dependence
starts playing larger role, more complex models are needed.
Such models can be fitted to our PIMC data given in Tables I
and II.

C. Other thermodynamic functions

In Fig. 4, we show the Helmholtz free energy from com-
bined Eqs. (6) and (9). As expected, lower density or larger
volume per molecule lowers the free energy due to the in-
creasing entropic factor. Dissociation and the consequent
fragments help in filling both the space and phase space more
uniformly or in less localized manner.

This kind of decreasing order is seen more clearly in the
increasing entropy, shown in Fig. 5. The entropy has been
evaluated from

S = U − F

T
, (11)
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FIG. 5. Entropy from Eq. (11) in the units of kB. Notations are the same as
in Fig. 3.
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F = − 1
β
lnZ
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ENTROPY
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The weighted least squares fit of the above energy func-
tion, Eq. (8), to our data for temperatures up to about 3900 K,
see Table I, gives the parameters,

a = 0.00157426,

b = 0.000132273,

c = −6.15622 × 10−6,

d = 0.00157430,

α = 269.410, and

D = a/b ≈ 11.9016.

In the fit, in addition to the (2SEM)−2 weights, we force the
first derivative of the energy with respect to the temperature to
be monotonically increasing up to 3900 K. The fit extrapolates
the 0 K energy to about 0.000 549EH above that of the para-
H+

3 , i.e., it gives an excellent match within the statistical error
estimate.

In Fig. 3, the function ln Z(T ) from Eq. (9) is shown in
the range 0 < T < 4000 K — the behavior of the model at
higher T is illustrated by the dashed line. Above 4000 K, the
three curves for different densities are obtained from those
shown in Fig. 1 by numerical integration of Eq. (7) as

ln Z(T ) = ln Z(T1) +
∫ T

T1

〈E〉
kBT 2

dT , (10)

where T1 = 500 K.
In Ref. 2, Neale and Tennyson (NT) have presented the

partition function ln Z(T ) based on a semi-empirical poten-
tial energy surface, see Fig. 3. The NT partition function has
conventionally been used in atmospheric models. The overall
shape is similar to the one of ours. However, the energy 〈E〉
evaluated from their fit tends to be systematically lower than
ours, although roughly within our 2SEM error limits. Thus,
the deviations are not visible in Fig. 1. The energy zero of the
NT fit, black dots in Figs. 1 and 3, is the same as ours in this
work, and thus, allows direct comparison in Fig. 1.

Also in Fig. 3, the difference due to the choice of the
J = 0 state as the zero reference is illustrated by the NT par-
tition function values, black pluses — the shape is notably af-
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with the same notations. The blue solid line below 4000 K and its extrapo-
lation (dashed line) are from Eq. (9), whereas the curves for three densities
are from Eq. (10). The ln Z(T ) data (black pluses) and the fit (black dots)
of Ref. 2 are also shown. The black dots have the same zero energy as the
partition function of this work (see text).
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FIG. 4. Helmholtz free energy from Eq. (5) in the units of Hartree. Notations
are the same as in Fig. 3.

fected at low T , only. As mentioned above, already, the zero
reference of ln Z can be chosen differently.

Our low temperature partition function, Eq. (9), is close
to complete. With the PIMC approach, we implicitly include
all of the quantum states in the system with correct weight
without any approximations. This partition function is the best
one for the modeling of the low density H+

3 ion containing at-
mospheres, at the moment. However, it is valid up to the disso-
ciation temperature, only. As soon as the density dependence
starts playing larger role, more complex models are needed.
Such models can be fitted to our PIMC data given in Tables I
and II.

C. Other thermodynamic functions

In Fig. 4, we show the Helmholtz free energy from com-
bined Eqs. (6) and (9). As expected, lower density or larger
volume per molecule lowers the free energy due to the in-
creasing entropic factor. Dissociation and the consequent
fragments help in filling both the space and phase space more
uniformly or in less localized manner.

This kind of decreasing order is seen more clearly in the
increasing entropy, shown in Fig. 5. The entropy has been
evaluated from

S = U − F
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, (11)
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MOLECULAR HEAT CAPACITY
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FIG. 6. Molecular heat capacity as a function of temperature calculated using
the analytical model of this work. The values on the y-axis are given in units
of the Boltzmann constant kB.

where the internal energy is U = 〈E〉 − 〈E〉T =0. As expected,
both the total energy (internal energy) and entropy reveal the
dissociation taking place, similarly.

Finally, in Fig. 6, we present the molecular constant vol-
ume heat capacity

CV = ∂〈E〉
∂T

, (12)

where 〈E〉 is taken from Eq. (8), which is valid below disso-
ciation temperatures, only.

Considering the goodness of our functional form for 〈E〉,
it is very convincing to see the plateau at about 3/2kB corre-
sponding to “saturation” of the contribution from the three ro-
tational degrees of freedom. Thus, above 200 K the rotational
degrees of freedom obey the classical equipartition principle
of energy. It is the last term in the functional form of Eq. (8),
that gives the flexibility for such detailed description of the
energetics.

It should be emphasized that the plateau is not artificially
constructed to appear at 3/2kB, except for a restriction given
for the first derivative of the total energy to be increasing.
Thus, the analytical model we present, Eq. (8), is found to
be exceptionally successful at low temperatures, i.e., below
dissociation temperature.

IV. CONCLUSIONS

We have evaluated the temperature dependent quantum
statistics of the five-particle molecular ion H+

3 at low densi-
ties far beyond its apparent dissociation temperature at about
4000 K. This is done with the PIMC method, which is ba-
sis set and trial wavefunction free approach and includes the
Coulomb interactions exactly. Thus, we are able to extend
the traditional ab initio quantum chemistry with full account
of correlations to finite temperatures without approximations,
also including the contributions from nuclear thermal and
equilibrium quantum dynamics.

At higher temperatures, the temperature dependent
mixed state description of the H+

3 ion, the density dependent
equilibrium dissociation–recombination balance, and the en-

ergetics have been evaluated for the first time. With the rising
temperature the rovibrational excitations contribute to the en-
ergetics, as expected, whereas the electronic part remains in
its ground state in the spirit of the Born–Oppenheimer ap-
proximation. At about 4000 K the fragments of the molecule,
H2 + H+, H+

2 + H, and 2H + H+, start contributing. There-
fore, presence of the H+

3 ion becomes less dominant and even-
tually negligible in high enough T .

We have also shown how the partial decoherence in the
mixed state can be used for interpretation of the fragment
composition of the equilibrium reaction. Furthermore, we
have evaluated explicitly the related molecular partition func-
tion, free energy, entropy, and heat capacity, all as functions
of temperature. An accurate analytical functional form for the
internal energy is given below dissociation temperature. We
consider all these as major additions to the earlier published
studies of H+

3 , where the dissociation–recombination reaction
has been neglected.

It is fair to admit, however, that PIMC is computationally
heavy for good statistical accuracy and approximations are
needed to solve the “Fermion sign problem” in cases where
exchange interaction becomes essential. With H+

3 , however,
we do not face the Fermion sign problem, as the proton wave-
functions do not overlap noteworthy and the two electrons
can be assumed to form a singlet state, due to large singlet
to triplet excitation energy.
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SOME FINAL NOTES AND 
THOUGHTS

• Dynamics is always present in molecules 
and all the constituent particles participate:

• in zero Kelvin  and
• in finite temperature

• In finite temperature
• there are no stable molecules
• classical dynamics emerge
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Essay title:  Ehrenfest theorem and decoherence
Instruction:  Find definition/explanation of both from 
the literature and compare these two as a way from 
quantum mechanics to classical mechanics
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