Vibrational Coupled Cluster Theory

Ove Christiansen University of Aarhus

Lundbeck Foundation Center for Theoretical Chemistry

Center for Oxygen Microscopy and imaging

Molecular Quantum Mechanics $H\Psi = E\Psi$

Born-Oppenheimer approximation:

$$H_{el}\Psi_{el} = E_{el}\Psi_{el}$$
$$(T_n + E_{el})\Psi_n = E \Psi_n$$
$$\Psi = \Psi_{el}\Psi_n$$

One cannot stop molecules moving! Accurate calculations requires us to consider nuclear motion!

The calculational perspective:

For electrons there are many standard theoretical methods, many computer programs, and much to choose from and build upon.

Quantum Mechanics for the motion of the nuclei? Less widespread.

Molecular Quantum Mechanics

$$H_{el}\Psi_{el} = E_{el}\Psi_{el}$$
$$(T_n + E_{el})\Psi_n = E \Psi_n$$
$$\Psi = \Psi \Psi$$

el

n

Three issues:

- I. Accuracy/efficient of individual points (ES theory)
- 2. From the ability to calculate individual points to the potential energy surface
- 3. Wave function for nuclear motion.

My primary focus here: Explicit wave function methods.

?? ?? Computational Scaling: Exponential => Polynomial => Linear

Coupled Cluster is <u>the</u> accurate approach for electronic correlation. Could it also be the case for nuclear motion?

Schedule

- Some Key-issues and background
 - > PES
 - Second Quantization
 - > VSCF
- Vibrational Coupled Cluster (VCC)
 - Theory
 - The models
 - Benchmarks
 - Implementation
- Response Theory
 - Spectra
 - The Lanzcos method

What are we looking at?

System

 q_m

 $\phi_{s_m}^m(q_m) \\ |\mathbf{s}\rangle = \prod_{m=1}^M \phi_{s_m}^m(q_m)$

 $|\Psi\rangle = \sum C_{\rm s} |{\rm s}\rangle$

M coupled distinguishable modes, index m Coordinates (normal or other)

Orthonormal one-mode basis functions

Hartree-Products: M-mode basis

Total wave function

H

Hamiltonian operator depending on

 $q_m, \frac{\partial}{\partial q_m}$

The Hamiltonian

$$H = T + V(q_1, q_2, q_3, \dots, q_M)$$

"Many-Body" Expansion $V^{(1)}, V^{(2)}, V^{(3)}, \dots, V^{(M)}$ $\bar{V}^{m_1}(q_{m_1}) = V(q_1 = 0, \dots, 0, q_{m_1}, 0, \dots, q_M = 0)$ $\bar{V}^{m_1, m_2}(q_{m_1}, q_{m_2}) = V(0, \dots, q_{m_1}, \dots, q_{m_2}, 0, \dots, 0) - V(0, \dots, q_{m_1}, \dots, 0) - V(0, \dots, q_{m_2}, \dots, 0)$

$$V^{\mathbf{m}_{n}}(q_{m_{1}},..,q_{m_{n}}) = V^{\mathbf{m}_{n}}(q_{m_{1}},..,q_{m_{n}}) - \cdots$$

$$\bar{V}^{\mathbf{m}_{n}}(...,q_{i} = 0,...) = 0$$
"2d1.txt" —

Two-mode coupling example: Hope decay of importance: one-mode, two-mode, three-mode....

N-mode representation, Carter, Bowman, and coworkers Pair-coupling: Gerber and coworkers

The Hamiltonian $H = T + V(q_1, q_2, q_3, ..., q_M)$ Generally $V = \sum_{\mathbf{m_n} \in \mathbf{MCR}\{\mathbf{V}\}} \overline{V}^{\mathbf{m_n}}(q_{m_1}, .., q_{m_n})$ $\mathbf{m_n} = (m_1, m_2, ..., m_n)$

The Hamiltonian

$$H = T + V(q_1, q_2, q_3, ..., q_M)$$

Generally $V = \sum_{\mathbf{m_n} \in \mathbf{MCR}\{\mathbf{V}\}} \bar{V}^{\mathbf{m_n}}(q_{m_1}, .., q_{m_n})$
 $\mathbf{m}_n = (m_1, m_2, ..., m_n)$

In practice: generate grid for each coupling (man-made or automatic). Then represented in terms of a product of one-mode operators.

Automized using energy derivatives and adaptive build up: Adaptive Density Guided Approach (ADGA)

Then represented in terms of a product of one-mode operators.

 $H = \sum_{t}^{m \to t} c_t \prod_{m \in \mathbf{m}^t} h^{m,t}$ Automized using energy derivatives and adaptive build up: Adaptive Density Guided Approach (ADGA)

Hartree product represented by occupation number vector

OC, JCP, 2004.

Hartree product represented by occupation number vector

Creation / annihilation operators

$$a_r^{m\dagger}|\dots 0000\dots\rangle = |\dots 0010\dots\rangle$$
$$a_r^m|\dots 0010\dots\rangle = |\dots 0000\dots\rangle$$

Hartree product represented by occupation number vector

Creation / annihilation operators

$$a_r^{m\dagger}|\dots 0000\dots\rangle = |\dots 0010\dots\rangle$$
$$a_r^m|\dots 0010\dots\rangle = |\dots 0000\dots\rangle$$

OC, JCP, 2004.

Nb!! Different from ladder operators!

Reference state:

SQ forms for other types of operators can easily be made

Reference state:

$$|\Phi_{\mathbf{i}}\rangle = \prod_{m} a_{i_{m}}^{m\dagger} |\mathrm{vac}\rangle$$

$$\uparrow \qquad m$$

$$(0, 0, 0)$$

SQ forms for other types of operators can easily be made

Reference state:

$$|\Phi_{\mathbf{i}}\rangle = \prod_{m} a_{i_{m}}^{m\dagger} |\mathrm{vac}\rangle$$

$$\uparrow \qquad m$$

$$(0,0,0)$$

Excitation operators:	$\tau_{\mu}\mathbf{m} = \prod a_{a_m}^{m\dagger} a_{i_m}^m$
	$m \in \mathbf{m}$

H assumed to be a sum of products, e.g.

 $h^1 h^2 h^3 = q_1 q_2 q_3^2$

SQ forms for other types of operators can easily be made

Reference state:

$$|\Phi_{\mathbf{i}}\rangle = \prod_{m} a_{i_{m}}^{m\dagger} |\mathrm{vac}\rangle$$

$$\uparrow \qquad m$$

$$(0, 0, 0)$$

Excitation operators:	$\tau_{\mu}\mathbf{m} = \prod a_{a_m}^{m\dagger} a_{i_m}^m$
	$m \in \mathbf{m}$

H assumed to be a sum of products, e.g.

 $h^1 h^2 h^3 = q_1 q_2 q_3^2$

$$H = \sum_{t}^{N_t} c_t \prod_{m \in \mathbf{m}^t} \sum_{p,q} h_{pq}^{mo} a_p^{m\dagger} a_q^m$$

SQ forms for other types of operators can easily be made

Reference state:

$$|\Phi_{\mathbf{i}}\rangle = \prod_{m} a_{i_{m}}^{m\dagger} |\mathrm{vac}\rangle$$

$$\uparrow \qquad m$$

$$(0,0,0)$$

Excitation operators:	$\tau_{\mu}\mathbf{m} = \prod a_{a_m}^{m\dagger} a_{i_m}^m$
	$m \in \mathbf{m}$

H assumed to be a sum of products, e.g.

 $h^1 h^2 h^3 = q_1 q_2 q_3^2$

$$H = \sum_{t}^{N_t} c_t \prod_{m \in \mathbf{m}^t} \sum_{p,q} h_{pq}^{mo} a_p^{m\dagger} a_q^m$$

SQ forms for other types of operators can easily be made

Reference state:

$$|\Phi_{\mathbf{i}}\rangle = \prod_{m} a_{i_{m}}^{m\dagger} |\mathrm{vac}\rangle$$

$$\uparrow \qquad m$$

$$(0, 0, 0)$$

Excitation operators:	$\tau_{\mu}m = \int$	$\int a_{a_m}^{m\dagger} a_{i_m}^m$
	$m \in$	m

H assumed to be a sum of products, e.g.

$$h^1 h^2 h^3 = q_1 q_2 q_3^2$$

SQ forms for other types of operators can easily be made

- One-to-one correspondence between "firstquantization" and second quantization
- Both WFs and operators represented in terms of creation and annihilation operators with welldefined algebraic properties

$$[a_{p_m}^m, a_{q_m}^{m\dagger}] = \delta_{mm'} \delta_{p_m q_m}$$
$$[a_{p_m}^{m\dagger}, a_{q_m}^{m\dagger}] = [a_{p_m}^m, a_{q_m}^m] = 0$$

- Formulation
- Inspiration

Vibrational Self Consistent Field

Ansatz: Wave function is a single Hartree-Product

$$|\Phi_{\mathbf{i}}(q_{1}, q_{2}, ...q_{M})\rangle = \prod_{m=1}^{M} \phi_{i_{m}}(q_{m}) \qquad |\Phi_{\mathbf{i}}\rangle = \prod_{m=1}^{M} a_{i_{m}}^{\dagger} |\operatorname{vac}\rangle$$

$$\overset{\operatorname{Mode:}}{=} \frac{1}{\Phi_{\mathbf{i}}(q_{1})} \stackrel{2}{=} \frac{3}{\Phi_{\mathbf{i}}(q_{2})} \stackrel{\operatorname{Virtual}}{\Phi_{\mathbf{0}}(q_{3})} \stackrel{\operatorname{Virtual}}{\operatorname{Occupied}}$$

$$\varphi_{\mathbf{i}} = \phi_{\mathbf{0}}^{\dagger}(q_{1}) \stackrel{\phi_{\mathbf{0}}^{2}(q_{2})}{\Phi_{\mathbf{0}}^{2}(q_{2})} \stackrel{\varphi_{\mathbf{0}}^{3}(q_{3})}{\operatorname{Self-Consistent-Field eqs.}}$$

$$\hat{F}^{m} \phi^{m} = \epsilon \phi^{m} \qquad \hat{F}^{m} = \langle \Phi_{\mathbf{i}} | H | \Phi_{\mathbf{i}} \rangle^{(-m)}$$

VSCF can be fast!

CPU-time: log-log plot.

VSCF scaling per iteration per state and with nM coupling potential:

 M^n

$$\hat{F}^m \phi^m = \epsilon \phi^m$$

Build mean-field. Watch out to include only terms that really couple something.

JCTC, 2010

Vibrational Correlation

- VSCF: Fast but not accurate enough
- Mean field theory
- Defines a correlation problem
- VCI: Vibrational configuration Interaction: Linear expansion in Hartree-Products
- FVCI: FullVCI the exact limit

Wave Function approaches - VSCF flavoured

VSCF:	Vibrational Self Consistent Field
VCI:	Vibrational Configuration Interaction Bowman and co-workers (1979), Rauhut (2004), many other
VMP:	Vibrational Møller-Plesset perturbation theory Gerber and co-workers (1996) (cc-VSCF = VMP2). OC (higher-order).
VCC:	Vibrational coupled cluster theory Second quantization & Response theory OC(2004), Seidler and OC (2007)
VMCSCF:	Vibrational Multi-configurational self-consistent-field Rauhut (2010)
MCTDH:	Multi-configurational Time-dependent Hartree Meyer, Cederbaum, Manthe (1990 -)
Quasi-degeneration	on perturbation theory

Yagi, Hirata, Hirao

Selection schemes:

Yagi, Benoit, Rauhut,

Vibrational Coupled Cluster Theory

Exponential parameterization:

 $|\text{VCC}\rangle = \exp(T)|\Phi_{\mathbf{i}}\rangle$

VCC II

VCC equations:

 $e_{\mu}\mathbf{m} = \langle \mu^{\mathbf{m}} | \exp(-T) H \exp(T) | \Phi_{\mathbf{i}} \rangle = 0$ $E = \langle \Phi_{\mathbf{i}} | H \exp(T) | \Phi_{\mathbf{i}} \rangle$

VCC II

VCC equations:

 $e_{\mu}^{\mathbf{m}} = \langle \mu^{\mathbf{m}} | \exp(-T) H \exp(T) | \Phi_{\mathbf{i}} \rangle = 0$ $E = \langle \Phi_{\mathbf{i}} | H \exp(T) | \Phi_{\mathbf{i}} \rangle$

A molecule

$$T = \sum_{\mathbf{m} \in \mathrm{MCR}[T]} \sum_{\mu^{\mathbf{m}}} t_{\mu^{\mathbf{m}}} \tau_{\mu^{\mathbf{m}}}$$

"Standard": Excitation level truncation Open possibility to design on MCR[T]

VCC[1] VCC[2] VCC[3] VCC[4] VCC[5] (VCCSD)

Comments

- Well-defined in SQ
- Similar to electronic structure theory??
 - Yes at some intermediate level.
 - Not in the basic theory: SQ and H different
 - Not in practice
- Different from Boson CC
 - also different from Durga Prasad's vibrational boson CC (and earlier ID-method of Bishop). (Banik et al. JCP 2008).
 - Ladder operators, not based on VSCF. Restricted to HO.
- The cure to everything??
 - Only an efficient computational correlation approach
 - When you are converged you are converged

Formaldehyde 4M potential

Ethylene 3M potential

Vibrational Møller Plesset (VMP)

 $H = H_0 + U = \sum_m F^{m,\mathbf{i}} + U$

Expand in power of $U \Rightarrow VMP2$, VMP3, VMP4, etc....

VMP energies as function of order for ethylene fundamentals

VMP arbitrary order implementation

	Variational	Size- consistent	Convergent
VMP	No	Yes	No
VCI	Yes	No	Yes
VCC	No	Yes	Yes

The challenge of implementing VCC: One of 39 pages of equations for VCC[3] with H3

]		
	${\cal D}_{m_0m_1m_2}^{m_0'm_1'm_2'}$	$c_{m_0m_1m_2} \cdot t^{m_0m_1} \cdot i_{m_1m_2} \cdot t^{m_2}_{m_0}$	$M^3O^3N^3$
+	${\cal D}_{m_0m_1m_2}^{m_0'm_1'm_2'}$	${}^{\{m_2\}}[c_{m_1m_2m_3}, t_{m_3}^{m_2}]_{\{m_1\}} \cdot t^{m_0m_1} \cdot i_{m_1m_2}$	$M^3 O^2 N^3$
+	${\cal D}_{m_0m_1m_2}^{m_0'm_1'm_2'}$	$_{\{m_1\}}[c_{m_0m_1m_3},i_{m_1m_3}]_{\{m_0\}} \cdot t^{m_0m_1} \cdot t^{m_2}_{m_0}$	M^3ON^3
_	${\cal D}_{m_0m_1m_2}^{m_0'm_1'm_2'}$	$_{\{m_1\}}[_{\{m_1\}}[c_{m_1m_3m_4}, i_{m_1m_3}]_{\{m_4\}}, t_{m_4}^{m_2}]^{\{m_2\}} \cdot t^{m_0m_1}$	$M^3 N^3$
_	${\cal D}_{m_0m_1m_2}^{m_0'm_1'm_2'}$	$[c_{m_1m_2m_3}, i_{m_3}]_{\{m_1m_2\}} \cdot t^{m_0m_1} \cdot {}^{m_2}t_{m_1}$	$M^3 O^2 N^3$
+	${\cal D}_{m_0m_1m_2}^{m_0'm_1'm_2'}$	$_{\{m_2\}}[c_{m_1m_2m_3},i_{m_2m_3}]_{\{m_1\}} \cdot t^{m_0m_1} \cdot t^{m_2}_{m_1}$	M^3ON^3
_	${\cal D}_{m_0m_1m_2}^{m_0'm_1'm_2'}$	$[c_{m_1m_3m_4}, i_{m_3m_4}]_{\{m_1\}} \cdot t^{m_0m_1} \cdot t^{m_2}_{m_1}$	M^3ON^3
+	${\cal D}_{m_0m_1m_2}^{m_0'm_1'm_2'}$	$c_{m_0m_1m_2} \cdot u^{m_0} \cdot t^{m_1m_2} \cdot t_{m_1m_2}$	$M^3O^3N^3$
	${\cal D}_{m_0m_1m_2}^{m_0'm_1'm_2'}$	$_{\{m_2\}}[c_{m_0m_2m_3},t_{m_2m_3}]_{\{m_0\}} \cdot u^{m_0} \cdot t^{m_1m_2}$	M^3ON^3
$+\frac{1}{6}[[H_3, T_2], T_3]$	$[2], T_2]$		
+	${\cal D}_{m_0m_1m_2}^{m_0'm_1'm_2'}$	$[c_{m_0m_1m_3}, t_{m_3}^{m_2}]_{\{m_0m_1\}}^{\{m_2\}} \cdot t_{m_1}^{m_0} \cdot t_{m_0}^{m_1}$	$M^3 O^2 N^3$
	${\cal D}_{m_0m_1m_2}^{m_0'm_1'm_2'}$	$c_{m_0m_1m_2} \cdot t_{m_1}^{m_0}\cdot t_{m_2}^{m_1}\cdot t_{m_0}^{m_2}$	$M^3O^3N^3$
+	${\cal D}_{m_0m_1m_2}^{m_0'm_1'm_2'}$	${}^{\{m_2\}}[c_{m_1m_2m_3}, t_{m_3}^{m_2}]_{\{m_1\}} \cdot t_{m_1}^{m_0} \cdot t_{m_2}^{m_1}$	$M^3 O^2 N^3$
	${\cal D}_{m_0m_1m_2}^{m_0'm_1'm_2'}$	${m_1}{[m_1]}{[m_1]}{[c_{m_1m_3m_4}, t_{m_3}^{m_1}]}{\{m_4\}, t_{m_4}^{m_2}]}{\{m_2\}} \cdot t_{m_1}^{m_0}$	M^3ON^3
+	${\cal D}_{m_0m_1m_2}^{m_0'm_1'm_2'}$	$[[[c_{m_3m_4m_5}, t_{m_3}^{m_0}]_{\{m_4m_5\}}^{\{m_0\}}, t_{m_4}^{m_1}]_{\{m_5\}}^{\{m_0\}\{m_1\}}, t_{m_5}^{m_2}]_{\{m_0\}\{m_1\}\{m_2\}}^{\{m_0\}\{m_1\}\{m_2\}}]$	$M^3 N^3$
+	${\cal D}_{m_0m_1m_2}^{m_0'm_1'm_2'}$	$[c_{m_0m_1m_3}, t_{m_3}^{m_2}]_{\{m_0m_1\}}^{\{m_2\}} \cdot t^{m_0m_1} \cdot t_{m_0m_1}$	$M^3 O^2 N^3$
	${\cal D}_{m_0m_1m_2}^{m_0'm_1'm_2'}$	$c_{m_0m_1m_2} \cdot t^{m_0m_1} \cdot t_{m_1m_2} \cdot t_{m_0}^{m_2}$	$M^3O^3N^3$
+	${\cal D}_{m_0m_1m_2}^{m_0'm_1'm_2'}$	${}^{\{m_2\}}[c_{m_1m_2m_3}, t_{m_3}^{m_2}]_{\{m_1\}} \cdot t^{m_0m_1} \cdot t_{m_1m_2}$	$M^3 O^2 N^3$
+	${\cal D}_{m_0m_1m_2}^{m_0'm_1'm_2'}$	${m_1}[c_{m_0m_1m_3}, t_{m_1m_3}]_{{m_0}} \cdot t^{m_0m_1} \cdot t_{m_0}^{m_2}$	M^3ON^3
	${\cal D}_{m_0m_1m_2}^{m_0'm_1'm_2'}$	${m_1}{[m_1]}{[m_1]}{[c_{m_1m_3m_4}, t_{m_1m_3}]}{m_4}, t_{m_4}^{m_2}{}^{{m_2}} \cdot t^{m_0m_1}$	$M^3 N^3$
+	${\cal D}_{m_0m_1m_2}^{m_0'm_1'm_2'}$	$_{\{m_2\}}[c_{m_1m_2m_3}, t_{m_2m_3}]_{\{m_1\}} \cdot t^{m_0m_1} \cdot t^{m_2}_{m_1}$	M^3ON^3
	$\mathcal{D}_{m_0m_1m_2}^{m_0'm_1'm_2'}$	$[c_{m_1m_3m_4}, t_{m_3m_4}]_{\{m_1\}} \cdot t^{m_0m_1} \cdot t_{m_1}^{m_2}$	M^3ON^3
$+[[H_3, T_2], T_3]$			
	${\cal D}_{m_0m_1m_2}^{m_0'm_1'm_2'}$	${m_1}[c_{m_0m_1m_3}, t_{m_3}^{m_1m_2}]{m_2}_{\{m_0\}} \cdot {m_0}t_{m_1}$	$M^3 O^2 N^3$

Automatic Derivation of VCC

1. Computer derives detailed equations

BCH Commutator expansion, SQ algebra, long lists involving contractions between integrals and amplitudes

2. Identify computational convenient form

Find intermediates. Rearrange for minimal operation count.

3. Process the resulting lists of terms and intermediates

Junh	utational s	camg.	v CI allu		lai scam	l
	VCC[2]	VCC[3]	VCC[4]	VCC[5]	VCC[6]	_
H2	M ³	M ⁴	M⁵	M ⁶	M ⁷	•
H3	M ³	M ⁴	M⁵	M ⁶	M ⁷	
H4	M^4	M⁵	M ⁶	M ⁷	M ⁸	
H5	M ⁵	M ⁶	M ⁶	M ⁷	M ⁸	

Computational scaling: VCI and VCC similar scaling

P Seidler and O Christiansen J. Chem. Phys. 131, 234109 (2009)

Automatic Derivation

BCH expansion

$$e_{\mu^{\mathbf{m}}} = \langle \mu^{\mathbf{m}} | \exp(-T) H \exp(T) | \Phi_{\mathbf{i}} \rangle$$

= $\langle \mu^{\mathbf{m}} | H + [H, T] + \frac{1}{2} [[H, T], T] + \frac{1}{6} [[[H, T], T], T], T] + \dots | \Phi_{\mathbf{i}} \rangle$

Commutator expansion

 $[[H_3, T_1], T_2] = H_3 T_1 T_2 - T_1 H_3 T_2 - T_2 H_3 T_1 + T_1 T_2 H_3$

Evaluation of matrix elements

$$e_{\mu^{\mathbf{m}}} \leftarrow \langle \mu^{\mathbf{m}} | T_1 H_3 T_2 | \Phi_{\mathbf{i}} \rangle$$

VCC scaling illustrations

VCC[2] 2M PES PAHs

VCC scaling illustrations

VCC scaling illustrations

VCC cost reductions

- Now: General and "fast" difficult to develop but now we have a general framework.
- Shown only a glimse of the theory and details
- Further avenues to explore
 - Parrallelization (partly there).
 - Exploit sparsity and structure in various ways
 - Define other models and reduction tricks

Additional CC-models:VCC[2pt3]

Full 2M, approximate 3M

 $H = F^{(0)} + U_2^{(1)} + U_3^{(2)}$

 $F^{(0)} = H_1 + F_2 + F_3$ $U_2^{(1)} = H_2 - F_2$ $U_3^{(2)} = H_3 - F_3$

Tildes: T1 similarity transf.

Additional CC-models:VCC[2pt3]

Full 2M, approximate 3M

 $H = F^{(0)} + U_2^{(1)} + U_3^{(2)}$

 $F^{(0)} = H_1 + F_2 + F_3$ $U_2^{(1)} = H_2 - F_2$ $U_3^{(2)} = H_3 - F_3$

Tildes: T1 similarity transf.

JCP.2

3M equations

$$e_{\mu_{3}} = \langle \mu_{3} | [F, T_{3}]^{(2)} + \tilde{U}_{3}^{(2)} + [\tilde{U}_{2}^{(1)}, T_{2}]^{(2)} + [\tilde{U}_{3}^{(2)}, T_{2}]^{(3)} + [\tilde{U}_{2}^{(1)}, T_{3}]^{(3)} + [\tilde{U}_{3}^{(2)}, T_{3}]^{(4)} \\ + \frac{1}{2} [[\tilde{U}_{2}^{(1)}, T_{2}], T_{2}]^{(3)} + \frac{1}{2} [[\tilde{U}_{3}^{(2)}, T_{2}], T_{2}]^{(4)} + [[\tilde{U}_{2}^{(1)}, T_{2}], T_{3}]^{(4)} \\ + [[\tilde{U}_{3}^{(2)}, T_{2}], T_{3}]^{(5)} + \frac{1}{2} [[\tilde{U}_{3}^{(2)}, T_{3}], T_{3}]^{(6)} + \frac{1}{6} [[[\tilde{U}_{3}^{(2)}, T_{2}], T_{2}], T_{2}]^{(5)} |\Phi_{\mathbf{i}}\rangle \\ \\ \mathbf{VCC} [2\mathbf{pt}_{2}]/\mathbf{H}_{2} \quad \mathbf{M}_{3} \text{ coaling as compared to } \mathbf{VCC} [2]/\mathbf{H}_{2} \mathbf{M}_{4}$$

v CC[2pt3]/H3 NP scaling as compared to v CC[3]/H3 NP

VCC[2pt3]

Benchmarks: H₂CO, SOCl₂, HFCO, CCl₂O

Fundamentals

VCC can be combined with vibrational Moller-Plesseth theory

A hierarchy with modest increase in complexity:

VCC[2] VCC[2pt3] VCC[3] VCC[3pt4] VCC[4]

. . .

VCC[n-pt-(n+1)]: same parameters as VCC[n+1] but only the most important (in terms of VMP order) are included among the terms not already in VCC[n].

VCC[3pt4]

Deviation from VCC[4]: ethylenoxide

VCC[3pt4] M ⁴	VCI[4] M ⁵
3,8	12,0
-1,5	31,9
0,2	1,9
0,2	Ι,7
0,1	2,3

Zoccante et al. JCP 2012

From response functions to spectra

$$\mathbf{LRF:} \quad \langle \langle X; Y \rangle \rangle_{\omega}^{\gamma} = \sum_{k \neq 0} \left[\frac{\langle \Psi_0 | X | \Psi_k \rangle \langle \Psi_k | Y | \Psi_0 \rangle}{\omega + i\gamma - \omega_k} - \frac{\langle \Psi_0 | Y | \Psi_k \rangle \langle \Psi_k | X | \Psi_0 \rangle}{\omega + i\gamma + \omega_k} \right]$$

1. Let $\gamma \rightarrow 0$. Then there are poles at $\omega \rightarrow \omega_{k}$.

$$\lim_{\omega \to \omega_f} (\omega - \omega_f) \langle \langle Y; Y \rangle \rangle_{\omega}^{\gamma=0} = |\langle \Psi_0 | Y | \Psi_f \rangle|^2$$

$$\Psi_{exact}(t) \Rightarrow \langle \langle Y; Y \rangle \rangle_{\omega}^{\gamma, exact} \Rightarrow \text{Exact spectra}$$

$$\Psi_{approx}(t) \Rightarrow \langle \langle Y; Y \rangle \rangle_{\omega}^{\gamma, approx} \Rightarrow \text{Approx. spectra}$$

Idea: 0. Determine reference state by the approach1. Calculate excited state by equations found from a formal analysis of the approximate response function

Time-dependent VCC

Exponential parameterization:

$$|VCC\rangle = \exp(-iF(t)) \exp(T(t))|\Phi_i\rangle$$

 \int Time-dep. amplitudes
Time-dep. generalized phase factor

Projection of the time-dependent Schrödinger equation:

$$i\hbar \dot{t}_{\mu^{\mathbf{m}}} = \langle \mu^{\mathbf{m}} | \exp(-T) H \exp(T) | \Phi_{\mathbf{i}} \rangle$$

Perturbation expansion, Fourier components, Derive

VCC - Linear response function

$$egin{aligned} &\langle \langle Y;Y
angle
angle_{\omega}^{\gamma} = \left\{ oldsymbol{\eta}^{Y}(\mathbf{t}^{Y}(\omega+i\gamma)+\mathbf{t}^{Y}(-\omega-i\gamma))+oldsymbol{F}oldsymbol{t}^{Y}(\omega-i\gamma)oldsymbol{t}^{Y}(\omega+i\gamma)
ight\} \ & (oldsymbol{A}-\omegaoldsymbol{1})oldsymbol{t}^{Y}(\omega) = -oldsymbol{\xi}^{Y} \end{aligned}$$

Sum over states => solve linear equations

$$A_{\mu_i\nu_j} = \langle \mu_i | \exp(-T)[H, \tau_{\nu_j}] | CC \rangle$$

$$\xi_{\mu_i}^Y = \langle \mu_i | \exp(-T)Y | CC \rangle$$

$$\eta_{\nu_j}^Y = \langle \Lambda | [Y, \tau_{\nu_j}] | CC \rangle$$

$$F_{\mu_i\nu_j} = \langle \Lambda | [[H, \tau_{\mu_i}], \tau_{\nu_j}] | CC \rangle$$

Dont worry too much about the details here.

VCC response excitation energies

A. Excited state equations through pole-search:

$$A_{\mu_i\nu_j} = \langle \mu_i | \exp(-T)[H, \tau_{\nu_j}] \exp(T) | \Phi_i \rangle$$
$$A_{\mu_i\nu_j} = \langle \mu_i | \exp(-T)H \exp(T) | \nu_j \rangle - \delta_{\mu_i,\nu_j} E_{VCC}$$
$$Asym. \text{ VCC Jacobian}$$
$$AR = \omega R$$

Huge A matrix never constructed explicitly

Iterative techniques: Davidson, Olsen, - well-separated states Lanczos

Require transformations with Jacobian Same spirit for implementation as described prevously

From response functions to spectra

$$\mathbf{LRF:} \quad \langle \langle X; Y \rangle \rangle_{\omega}^{\gamma} = \sum_{k \neq 0} \left[\frac{\langle \Psi_0 | X | \Psi_k \rangle \langle \Psi_k | Y | \Psi_0 \rangle}{\omega + i\gamma - \omega_k} - \frac{\langle \Psi_0 | Y | \Psi_k \rangle \langle \Psi_k | X | \Psi_0 \rangle}{\omega + i\gamma + \omega_k} \right]$$

2. For finite γ the imaginary part gives a Lorentzian broadened spectrum

$$\operatorname{Im}[\langle\langle Y;Y\rangle\rangle_{\omega}^{\gamma}] = -\sum_{k\neq 0} |\langle\Psi_{0}|Y|\Psi_{k}\rangle|^{2} \left(\frac{\gamma}{(\omega-\omega_{k})^{2}+\gamma^{2}}-\frac{\gamma}{(\omega+\omega_{k})^{2}+\gamma^{2}}\right)$$
$$\lim_{\gamma\to 0} \operatorname{Im}[\langle\langle Y;Y\rangle\rangle_{\omega}^{\gamma}] = -\sum_{k\neq 0} \pi |\langle\Psi_{0}|Y|\Psi_{k}\rangle|^{2} \left(\delta(\omega-\omega_{k})-\delta(\omega+\omega_{k})\right)$$

Use response function analogy with exact theory:

$$\Psi_{exact}(t) \Rightarrow \langle \langle Y; Y \rangle \rangle_{\omega}^{\gamma, exact} \Rightarrow \text{Exact spectra (broadened)} \\ \Psi_{approx}(t) \Rightarrow \langle \langle Y; Y \rangle \rangle_{\omega}^{\gamma, approx} \Rightarrow \text{Approx. spectra (broadened)}$$

Spectra and states

- Challenge: The number of states increases wildly with the number of degrees of freedom
- Their nature can be hard to predict
- Calculating all the states explicitly becomes impossible
- Can we work around this?
- Do we need all states explicitly?

Idea: use directly damped response functions themselves to get absorption.

Linear response functions determine the absorption spectrum defined as

 $\sigma_X^{\gamma}(\omega) = -\omega \operatorname{Im} \langle \langle X; X \rangle \rangle_{\omega}^{\gamma}$

VCI wave function -> VCI response function -> VCI spectrum VCC wave function -> VCC response function -> VCC spectrum

VCI & VCC response functions have been derived and implemented.

How solved in practice? I. Lanczos iteration

 $C(\omega) = \mathbf{U}^{T} (\mathbf{A} - \omega \mathbf{1})^{-1} \mathbf{V}$ = $uv \mathbf{u}^{T} (\mathbf{A} - \omega \mathbf{1})^{-1} \mathbf{v}$ Contribution to response functions for VCI / VCC

Asymmetric matrix Lanzcos iteration on response A matrix:

$oldsymbol{q}_1 = oldsymbol{v} \qquad oldsymbol{p}_1 = oldsymbol{u}$		$\left(\alpha_{1}\right)$	γ_1	0	0	0	0	0	
$\beta_j \boldsymbol{q}_{j+1} = \boldsymbol{r}_j = (\boldsymbol{A} - \alpha_j) \boldsymbol{q}_j - \gamma_{j-1} \boldsymbol{q}_{j-1}$		β_1	α_2	γ_2	0	0	0	0	
$\gamma_j \boldsymbol{p}_{j+1} = \boldsymbol{s}_j = (\boldsymbol{A}^T - \alpha_j) \boldsymbol{p}_j - \beta_{j-1} \boldsymbol{p}_{j-1}$	$oldsymbol{T}^{(k)} =$		•	•	•	•	•	•	
$\alpha_i = \boldsymbol{p}_i^T \boldsymbol{A} \boldsymbol{q}_i$			•	•	•	•	•	γ_{k-1}	
$1 = \boldsymbol{p}_{j+1}^T \boldsymbol{q}_{j+1} = \left(\frac{\boldsymbol{s}_j}{\gamma_j}\right) \left(\frac{\boldsymbol{r}_j}{\beta_j}\right)$		(0	•	•	•	0	β_{k-1}	$lpha_k$	

NB Focus is not on Lanzcos as eigensolver, but on building a space for accurate calculation of a matrix functions. Note start guess.

2. Complex equation solvers: - another time

The moments of the spectra converge with increasing Lanczos iterations

$$[\sigma_X(\omega)]_n = \int_0^\infty \sigma_X(\omega) \omega^n d\omega$$

$$[\sigma_X^{(j)}(\omega)]_n = \int_0^\infty \sigma_X^{(j)}(\omega) \omega^n d\omega$$

The Lanzcos spectrum truncated at j-th step.
$$[\sigma_X(\omega)]_n = [\sigma_X^{(j)}(\omega)]_n \qquad 0 \le n \le 2j-3$$

Uracil convergence for VCC[2]

Summary

VCC the accurate choice at given excitation level → theoretically attractive (size-consistency)

VCC can be made computationally competitive

Automatic derivation and implementation of equations

→ General VCC response theory now possible.
→ Approximate VCC models easily implemented and tested.

Direct calculation of spectra/properties - important for larger systems defining an important role of "damped" response theory.

MidasCpp

Molecular Interactions, Dynamics and Simulations Chemistry Program Package in C++

Potential energy and property surface generation: Static and dynamic grids, ADGA (Adaptive Density-Guided Approach) Derivative based/Interpolation etc., Interfaces to various electronic structure programs

Wave functions: VSCF, VMP*n*, VCI, VCC

+ Response Theory

- + Temperature
- + Properties