Fluctuations in Ambient Water

Lars G.M. Pettersson Stockholm University

> Snapshot from MD at 253K Blue: High tetrahedrality Yellow: High density

Coworkers and Funding

Anders Nilsson/SSRL-SU

Congcong Huang/SSRL **Dennis Nordlund/SSRL** Lars-Åke Näslund/SSRL Hirohito Ogasawara/SSRL Sarp Kaya/SUNCAT Tomas Weiss/SSRL Trevor McQueen/SUNCAT Chen Chen/SUNCAT Jonas Sellberg/SUNCAT Martin Beye/SUNCAT-BESSY Andreas Møgelhøj/SUNCAT Jens Nørskov/SUNCAT Philippe Wernet/SSRL-BESSY

Mike Bogan/PULSE Dmitri Starodub/PULSE **Raymond Sierra/PULSE** Duah Loah/PULSE Hartawan Laksmono/PULSE Christina Hampton/PULSE Uwe Bergmann/LCLS Jan Feldkamp/LCLS Sebastian Boutet/LCLS Garth Williams/LCLS

Matteo Cavalleri/Stockholm Michael Odelius/Stockholm Michael Leetmaa/Stockholm Mathias Ljungberg/Stockholm Daniel Schlesinger/Stockholm Thor Wikfeldt/Stockholm Takashi Tokushima/SPring8 Yoshihisa Harada/SPring8 Yuka Horikawa/SPring 8 Shik Shin/Tokyo University Daniel Deponte/CFEL Andy Martin/CFEL Andrew Barty/CFEL

National Science Foundation (NSF) Department of Energy (DOE) Swedish Research Council Swedish Foundation for Strategic Research

Anomalous Properties of Water

J. Phy s.: Condens. Matter 19 (2007) 205126

G Franzese and H E Stanley

Critical Phenomena: Properties At and Beyond the Widom Line

Simeoni *et al.* Nature Physics **6**, 503 (2010) From velocity of nanometric acoustic waves in supercritical fluid argon at high pressures by inelastic x-ray scattering and MD simulations. Sharp change upon crossing Widom line One phase, but different properties in some respects Ambient water is far from T of a liquid-liquid transition (228K)

Could an LLCP (liquid-liquid critical point, real or virtual) affect also ambient water?

"HDL/LDL" Structure of *Ambient* Water: "New" Spectroscopies and Data

525

One phase region ensity fluctuation Photon energy [eV]

Ambient condition

High Densit Liquid (HDL)

nase coexistence line

Widom line Critical point

Low Densit Liquid (LDL)

- XAS indicates predominant asymmetrical coordination with fewer H-bonds than in tetrahedral model В Wernet et al., Science 304 (2004) 995
- XES shows two motifs: strongly tetrahedral ("LDL") and very disordered ("HDL"); 25:75 Tokushima et al., Chem. Phys. Lett. 460 (2008) 387
- SAXS shows density fluctuations Enhanced upon cooling Huang et al., PNAS 106, 15214 (2009); JCP 133, 134504 (2010)
- What's the driving force? Enthalpy vs. Entropy -- Quantized librations; 2nd critical point • **XRD** shows continuous transition on supercooling to T~223 K

LCLS free-electron laser; Sellberg et al., submitted

XAS and XES

XAS on Liquid Water

- Glycine on Cu(110) in UHV at 100 K not a *perfect* model for biomolecules bonding to metal implantates
- Need water bad combination with UHV
- Soft x-rays on water meniscus in He atmosphere
- No intention to study water
- Needed background water spectrum to subtract to see bio contribution...

XAS: What to Expect for Established Tetrahedral Model of Water

Bondlength with the ruler:

If the molecules in the liquid bind similar to ice, but with more disorder then the spectrum should be like a broadened ice spectrum....

More disordered

Some disorder

Ice

X-ray Absorption Spectroscopy of Water

Myneni et al. J. Phys. Condens. Matter 14 (2002) 213

Nilsson et al., J. Electron Spec. Rel. Phen. 177, 99 (2010)

Water Clusters on Surfaces

Scanning Tunneling Microscopy (STM) of Water on Ru(0001) Nordlund et al., Phys. Rev. B **80**, 233404 (2009)

Deposited at 50 K

Annealed to 130 K imaged at 50 K

IR shows that water molecules are adsorbed flat with the HOH plane parallel to the surface

A. Hodgson et al.

Two-Dimensional Water Structures

Nordlund et al., Phys. Rev. B 80, 233404 (2009)

Main-edge; Collapse of 2nd Shell High Density Form

X-ray Raman scattering of high pressure ices Strong increase in main-edge

Pylkkänen et al., J. Phys. Chem. B 2010, 114, 3804

Main-edge; Collapse of 2nd Shell High Density Form

Water should have a collapsed 2nd shell High Density Liquid (HDL)

Pylkkänen et al., J. Phys. Chem. B 2010, 114, 3804

Summary XAS

Post-edge is related to directed H-bonds Position shifts with H-bond length Tetrahedral structures in water at similar H-bond length as in ice

Pre-edge is related to weakened/broken Hbonds (ambient T ~ 80%) Intensity and energy position change depending on distortions

Main-edge intensity is related to collapse of 2nd shell High density liquid structures Non-donor (angular distortion)

XES H₂O: Temperature dependence

- Intensity transferred from 1b₁' to 1b₁" as temperature is increased (fewer H-bonds)
- NO broadening, NO new peaks: Either tetrahedral OR very disordered

Tokushima et al., Chem. Phys. Lett. 460 (2008) 387

Orbital Localization

dimer-D Molecular Orbitals

Auger Decay Resonant Photo-Emission Spectroscopy (RPES)

• Dominant decay process

<u>Normal</u>

• Decay from ionized state (excited electron gone)

Spectator

- Excited electron present when decay occurs
- Causes an ~5 eV shift

Nordlund et al., PRL 99, 217406 (2007)

Resonant Auger (RPES) Measurements of Delocalization Rates

$$\tau_{\rm CT} = \tau_{\rm c}^{*}(f_{\rm aug}^{-1} - 1)$$

 $\begin{array}{l} f_{aug} \mbox{ fraction normal Auger} \\ \tau_c \mbox{ core hole life time} \\ \tau_{CT} \mbox{ delocalization rate} \end{array}$

Core hole clock Björneholm et al., PRL **68**, 1892 (1992)

Post-edge delocalization faster than 500*as* along H-bond network Important in biology – e⁻ transport

Pre-edge remains localized longer than 20*fs*

Nordlund et al., PRL 99, 217406 (2007)

Summary X-ray Emission Spectroscopy

- Bimodal structural distribution
- Tetrahedral loses intensity with temperature, but peak at fixed energy
- Distorted gains intensity and disperses with temperature
- Energy taken up through:
 - Thermal excitation of distorted species
 - Breaking up a fraction of tetrahedral species

Tokushima et al., Chem. Phys. Lett. 460 (2008) 387

Huang et al., PNAS. 106 (2009) 15214

Connection between XAS/XRS and XES

Tokushima et al., Chem. Phys. Lett. 460 (2008) 387

Huang et al., PNAS. 106 (2009) 15214

Enthalpy vs. Entropy

- **Tetrahedral loses intensity** with temperature, but peak at fixed energy
- **Distorted gains intensity and disperses** with temperature in both XES and XAS
- Energy taken up through:
 - Thermal excitation of distorted species
 - Breaking up a fraction of tetrahedral species
- Required: Active modes in partition function

Tokushima et al., Chem. Phys. Lett. 460 (2008) 387

Level-spacing in tetrahedral ice (~800 cm⁻¹) too large No thermal excitation, no entropy contribution Less specific, but more H-bond interactions (vdW) (distorted species) lowers spacing to kT ("HDL")

Motifs Population

Decompose based on ice spectrum

Species	Disordered	r	
		Tetrahedral	
XAS	60-80%	20-40%	
XES	70-80%	20-30%	
MD	20-40%	60-80% ←	

Decompose as two shifted spectra

What Do Diffraction+IR/Raman Say? RMC Modeling

What do the data actually allow when there are "NO" assumptions *i.e.* when MD potentials or force-fields do not guide the analysis?

Use reverse Monte Carlo (RMC) to determine water structures that reproduce:

- a) X-ray diffraction (Hura *et al.*, 2003 Q_{max} =10.8 Å⁻¹)
- b) Neutron diffraction (Soper, Q_{max} =50 Å⁻¹)
- c) E-field distribution (Raman spectrum)
- d) Internal geometry distribution (from PI-CPMD; Sterne and Bern, JCP 115 (2001) 7622)
- Random Monte Carlo moves to minimize χ^2 difference between model and experiment \rightarrow maximally disordered structure consistent with data and constraints

TARGET – Explore extreme limits:

- Fit data AND maximize number of H-bonds to get maximally symmetric model OR -
- Fit data AND maximize number of asymmetric species to get maximally
 asymmetric model
 Leetmaa *et al.*, J. Chem. Phys. 129, 084502 (2008)
 Wikfeldt *et al.* J. Phys. Chem. B 113, 6246 (2009)

RMC Fit of Diffraction Data

a

b

С

d

e

15

20

•X-ray and neutron data fitted together with E-field

- Equally good fit in both cases
- Diffraction data give NO preference
- IR/Raman equally good fits (E-field)

Leetmaa et al., J. Chem. Phys. 129, 084502 (2008)

Two Classes: Instantaneous Inhomogeneities? Small-Angle X-ray Scattering (SAXS)

Water – Ambient to Supercooled Regime

SAXS

Ambient to Supercooled Regime

Having both wide and small angle data from the same measurement we fit a normal and anomalous contribution:

Normal contribution from the Percus-Yevick approximation:

 $\frac{1}{S^{ref}} \propto 1 - 12\eta \frac{\left[\eta(3 - \eta^2) - 2\right] j_1(Q\sigma)}{(1 - \eta)^4} \frac{Q\sigma}{Q\sigma}$ $\eta = \pi n \sigma^3 / 6$ Anomalous contribution from Ornstein-Zernike theory:

$$S^A(Q) \propto \frac{1}{\zeta^{-2} + Q^2}$$

Extract correlation length ζ

Apparent Power Law – Widom Line

Critical phenomena characterized by power laws with critical exponents

Fluctuations from disordered into tetrahedral Real-space ~1 nm

TIP4P/2005 simulations Blue LDL, Red HDL based on inherent structure

with

 $\varepsilon = T/T_s - 1$ with T_s=228 K

Huang et al., JCP **133**, 134504 (2010)

Wikfeldt et al., PCCP 13, 19918 (2011)

Isothermal Compressibility H₂O: Different Force-Fields

Minimum about right, **but**: Overestimate at high temperatures Underestimate at low temperatures

Agreement better at high pressure

Corresponding states: Limmer and Chandler http://arxiv.org/pdf/1305.1382.pdf

Normal liquid behavior

Pi et al., Mol. Phys. 107, 365 (2009)

TIP4P/2005

- TIP4P/2005 reproduces density maximum and qualitatively minimum in χ_T
- LLCP at $T_C = 193$ K, $P_C = 1350$ bar [Abascal and Vega, J. Chem. Phys. 133, 234502 (2010)]
- Need very large simulations for SAXS, here 45,000 molecules ($Q \sim 2\pi/R$)
- Need long equilibration times to reach equilibrated long-range correlations
- Need to average RDFs over long time intervals to average out spurious fluctuations in low-q structure factor $S(q) = 1 + 4\pi\rho \int w(r)r^2[g(r)-1]\frac{\sin(qr)}{r}dr$

SAXS from TIP4P/2005

Wikfeldt et al., J. Chem. Phys. 134, 214506 (2011)

SAXS and TIP4P/2005

Excellent representation but:

278 K slight underestimate

Shift both in T and in S(k) needed

At 230 K maximum but smaller than expt. at 252 K

Real liquid closer to LLCP

Wikfeldt et al., J. Chem. Phys. 134, 214506 (2011)

Enhancement at Widom line depends on distance to critical point (LLCP) Real water may have a LLCP at close to ambient pressure (130-500 bar *) This would give enhanced fluctuations and anomalous properties at ambient conditions

* Holten & Anisimov, arXiv:1207.2101v1; Mishima, JCP 133, 144503 (2010)

Tetrahedrality vs. Density: Anti-Correlated Fluctuations

Tetrahedrality <Q>

225 K

 $q_i = 1 - \frac{3}{8} \sum_{j=1}^{3} \sum_{k=j+1}^{4} \left(\cos \theta_{jik} + \frac{1}{3} \right)^2$

Wikfeldt et al., J. Chem. Phys. 134, 214506 (2011)

Density Fluctuations in TIP4P/2005 Water

Number density (*n*) and structural (<Q>) fluctuations with temperature: 200≤T≤250 K

Correlation coefficient

Two types of density fluctuations: Structural and Thermal

At low T: slow density fluctuations anti-correlated with <Q>; disordered to tetrahedral

At high T: simple thermal motion

Simulation gives the qualitative picture but fluctuations **too small** to give SAXS (and XAS, XES)

Local Structure Index (LSI)

Order molecules according to distance from molecule *i* as $r_1 < r_2 < r_3 < \cdots < r_{n(i)} < 3.7 \text{ Å} < r_{n(i)+1}$ where n(i) is the number of molecules that are within 3.7 Å from molecule *i*

Define:

$$\Delta(j;i) = r_{j+1} - r_j$$

Average: $\overline{\Delta}(i)$ is the average of $\Delta(j;i)$ over all neighbors *j* of molecule *i* within cutoff

LSI:

 $I(i) = \frac{1}{n(i)} \sum_{j=1}^{n(i)} \left[\Delta(j;i) - \overline{\Delta}(i) \right]^2$

Measures degree of order

Shiratani & Sasai *J Chem Phys* **104,** 7671 (1996) Shiratani & Sasai *J Chem Phys* **108,** 3264 (1998) Appignanesi et al. *Eur. Phys. J. E* **29,** 305 (2009) Accordino et al. *Eur. Phys. J. E* **34,** 48 (2011) Wikfeldt et al., PCCP **13**, 19918 (2011)

Bimodality in Inherent Structure

HDL and LDL

Classify molecules in "Real Structure" according to LSI in Inherent Structure

Pair-correlation as LDL and HDL

Pair-correlation among species: high-high, low-low, and crosscorrelation high-low

Cross-correlation weak \rightarrow spatial separation

Wikfeldt et al., PCCP 13, 19918 (2011)

Temperature and Pressure Dependence

Ambient conditions: ~75% HDL, 25% LDL (≡ XAS, XES)

Widom line: 50% HDL, 50% LDL Maximum fluctuations $(\kappa_{\rm T}, C_{\rm P})$

Increasing pressure: Fraction HDL increases

Wikfeldt et al., PCCP **13**, 19918 (2011)

Temperature Dependence LSI vs XES

Energy (eV)

Bimodality with similar temperature dependence in LSI inherent structure and in XES/XAS Smeared out in real structure

Bimodality Washed out in Real Structure

Strong bimodality only in inherent structure ≠ XAS, XES

Above 320 K thermal fluctuations are overestimated

Below 280 K structural LDL/HDL fluctuations are underestimated

Potential surface not sufficiently corrugated? Simulation moving too far above? XES/XAS say bimodal...

Bimodality Smeared Out

Strong bimodality only in inherent structure ≠ XAS, XES

Above 320 K thermal fluctuations are overestimated

Below 280 K structural LDL/HDL fluctuations are underestimated

Potential surface not sufficiently corrugated? Simulation moving too far above? XES/XAS say bimodal...

LDL

HDL

Add Electronic Cooperativity

Cooperativity and anticooperativity effects (QM electronic structure)

Cooperativity: The central H-bond in a chain of 7 molecules has maximum strength Ojamäe & Hermansson, J. Phys. Chem. 98, 4271 (1994)

Anticooperativity: DA and DDAA favored over imbalance between donors and acceptors

Not described by polarizable FF Nilsson et al., J. Chem. Phys. **122**, 154505 (2005)

DFT GGA: Favors H-bond formation Enhances tetrahedral LDL strongly

HDL

Add Non-Local Correlation (vdW)

Increase the Size

Add Quantum Effects

Librational modes quantized Level-spacing in tetrahedral ice (~800 cm⁻¹) too large No thermal excitation, no entropy contribution Less specific, but more H-bond interactions (vdW) (distorted species) lowers spacing to kT ("HDL")

Consistent with Existence of Widom Line and 2nd Critical Point Scenario (real or virtual)

HDL dominates (from XES/XAS)

Poole et al., Nature 360, 324 (1992)

Correlation length

Correlation length Liquid-Gas CP

Simulate liquid-gas critical point at 640 K ρ =310 kg/m³ (Vega et al. JCP 125 (2006) 34503)

OZ correlation length small: $\zeta = 5.9$ Å Affects O-O PCF to large distance There is **no** well defined distance

Real Structure Liquid-Gas CP

The correlation length is not a measure in real space that can be compared with a molecular length scale

SAXS measures instantaneous heterogeneities in the electron density

Real Structure Liquid-Gas CP

To obtain a rough approximate dimesion in real space Assume static nanoparticle Guinier radius $R_G = \sqrt{3}\xi$ Assuming spherical shape $D = 2\sqrt{5/3}R_G$ With $\zeta = 5.9$ Å

we get D=26 Å

It gives a sense of size range of inhomogeneity

It is not 5.9 Å nor 59 Å

There are many sizes but an average could be 26Å

Correlation Length – Apparent Power Law

Extract OZ correlation length as in experiment

Pressure moves the increase to lower T

Maximum and then decrease – **Widom line** (in the model)

Here: from computed SAXS signal which can be related to experiment

Wikfeldt et al., J. Chem. Phys. 134, 214506 (2011)

Isothermal Compressibility

Isothermal compressibility increases, shows a maximum (Widom line) and then a decrease

Values from extrapolation of SAXS (45,000 molecules) or from fluctuation formula (360 molecules)

Excellent agreement for higher pressures

Wikfeldt et al., J. Chem. Phys. **134**, 214506 (2011)

Expt: R.J. Speedy and C.A. Angell, J. Chem. Phys. 65, 851 (1976)H. Kanno and C. A. Angell, J. Chem. Phys. 70, 4008 (1979)