Anharmonic vibrational spectroscopy

Objective
- An easy-to-use and reliable tool to compute spectroscopic data beyond the harmonic level,
- In particular:
 - Vibrational averages of a wide range of properties
 - Vibrational energy level (transition energies)
 - Transition integrals (band intensities)

Requirements
- Cost-effective
- Usable as a black-box procedure
- Able to account for environmental effects (solvent)
- Scalable (memory, computational time) to sizeable molecular systems

Vibrational Spectrum

- **Selection rules + intensity:** observed transitions
 - Transforming to the molecule fixed axis frame
 - Transition dipole moment integral:
 \[\int \psi_i^\dagger \mu \psi_f d\tau_{il} d\tau_{fl} \]
 - Dipole moment
 - Expanded as a Taylor series in the vibrational coordinate
 - Non-zero transition probability
 - Some terms non-zero
 - Permanent dipole moment
 - Dipole moment vary during vibrations
 - Selection rules
 - \(\mu_e \) independent of \(q \) \(\Rightarrow \) do not influence selection rules
 - Main selection rule dependent on linear term
 - Secondary selection rule - quadratic term, etc

- **Fundamental bands**
 - \(\Delta v = 0 \)
 - Most transitions from \(\Delta v = 0 \)
 - \(\Delta v = 1 \)
 - \(\Delta v = 2 \)
 - Overtones

Beyond harmonic oscillator

- **Reality: anharmonic potential**
 - Good approximation: Morse potential
 - \(\beta \): molecule dependent (curvature)
- **Vibrations**
 - Small displacements from \(R_e \)
 - Taylor expansion

- **Solving Schrödinger equation for Morse oscillator**
 - Energy in cm\(^{-1}\)
 \[E_{vib}^{\text{anh}} = \left(v + \frac{1}{2} \right) \omega_{\text{vib}} \left(v + \frac{1}{2} \right) \omega_{\text{vib}} \chi_e \]

Theoretical background

- Transforming to the molecule fixed axis frame
- Dipole moment
 - Expanded as a Taylor series in the vibrational coordinate
- Non-zero transition probability
 - Some terms non-zero
- Selection rules
 - \(\mu_e \) independent of \(q \) \(\Rightarrow \) do not influence selection rules
 - Main selection rule dependent on linear term
 - Secondary selection rule - quadratic term, etc
Vibrational Spectra

• Harmonic wavenumber
• Anharmonic constant
• Anharmonic:
 - Bands shifted
 - More complex spectra

\[E_{\text{vib}} = \left(\nu + \frac{1}{2} \right) \omega_e \]

\[E_{\text{vib}} = \left(\nu + \frac{1}{2} \right) \omega_e \]

\[\omega_e, \omega_a \]

\[\chi_e, \chi_a \]

\[\omega_e(1-2\chi_e) \]

\[\omega_a(1-2\chi_a) \]

\[\omega_e(2\chi_e) \]

\[\omega_a(2\chi_a) \]

Anharmonic contributions

Vibrational spectroscopy

• Beyond harmonic approximation:
 - Vibrations with similar frequency can interact
 - Fermi resonance
 - Named after Enrico Fermi, who explained this phenomenon
 - Accidentally energies of the transitions have almost the same energy
 - Quantum mixing
 - Modification of the energies and intensities of absorption bands

Example: CO

- Vibrations: wavefunctions mix
- Intensity gain, \(\nu_1 \) observed

\[\nu_1 (667 \text{ cm}^{-1}) \]

\[\nu_2 (1388 \text{ cm}^{-1}) \]

2D vibrational wavefunctions

Anharmonic effects: resonances
Vibrational spectroscopy

Vibrational energy levels

- The second-order vibrational perturbation theory (VPT2)
 - Expansion of the potential energy operator $\hat{V}(q)$:
 $$\hat{V}(q) \approx \frac{1}{2} \sum_{i} \omega_{i} q_{i}^{2} + \frac{1}{6} \sum_{i,j} k_{ij} q_{i} q_{j} + \frac{1}{24} \sum_{i,j,k} k_{ijk} q_{i} q_{j} q_{k}$$
 - Inclusion of a kinetic contribution arising from the vibrational angular momentum j_{α}:
 $$\sum_{\alpha} \beta_{\alpha} j_{\alpha}$$

- Improved accuracy at a reasonable computational cost
 - However, possible presence of singularities due to Fermi resonances
 - (Type 1: $\omega_{i} \approx 2 \omega_{j}$, Type 2: $\omega_{i} \approx \omega_{j} + \omega_{k}$) Ex: $\frac{k_{ij}^{2}}{16(\omega_{i} - \omega_{j} - \omega_{k})}$

Vibrational spectroscopy

Treatment of singularities in energy levels calculations

- Identification of Fermi resonances
 - Near-null denominators \Rightarrow large contributions from resonant terms
 - Evaluation criteria:
 - Threshold on $\Delta \omega$. However, the value of the numerator is ignored
 - Martin criteria: both numerator and denominator taken into account
 $$\Delta \omega = \frac{k_{ij}^{4}}{256(\omega_{i} - 2 \omega_{j})^{3}}$$
 - Singularity correction: DVPT2 and GVPT2
 - Deperturbed VPT2: Near-resonant terms are removed
 - Generalized VPT2:
 - Near-resonant terms are removed (same as DVPT2)
 - Removed terms are treated variationally
 - However, both DVPT2 and GVPT2 results depend on the accuracy of the resonance criteria.

Treatment of singularities: “resonance-criteria free”

- Degeneracy-corrected PT2 (DCPT2)
 - All terms are replaced by non-resonant terms, following the scheme:
 $$\frac{\delta}{2 \epsilon} \rightarrow S(\sqrt{\epsilon^{2} + k^{2} - \epsilon}) \epsilon = \frac{\Delta \omega}{2}$$
 - Pros: No parameter used, calculations devoid of singularities
 - Cons: Transformation is ill-suited for $k \sim \epsilon \gg 1$

- HDCPT2: Hybrid VPT2-DCPT2
 $$H_{DCPT2} = \Lambda \hat{V}_{PT2} + (1 - \Lambda) \hat{V}_{DCPT2}$$
 $$\Lambda = \frac{\tanh \left(\alpha \sqrt{k^{2} - \beta} \right) + 1}{2}$$

Anharmonic vibrational IR, VCD and Raman spectra

- IR: Molar extinction coefficient, $\chi(\tilde{\nu}_{0})$
- VCD: Difference in molar extinction coefficient, $\Delta \chi(\tilde{\nu}_{0})$
- Raman: Scattering $\partial r(\tilde{\nu}_{0})/\partial \Omega$

$$\chi(\tilde{\nu}_{0}) = \frac{8 \epsilon^{2} \chi(\tilde{\nu}_{0})}{3000(\chi(\tilde{\nu}_{0}) + \alpha / 24 \sum_{i} \chi(\tilde{\nu}_{0} - \epsilon_{i} - \tilde{\nu}_{0})}$$

$$\Delta \chi(\tilde{\nu}_{0}) = \frac{8 \epsilon^{2} \chi(\tilde{\nu}_{0})}{3000(\chi(\tilde{\nu}_{0}) + \alpha / 24 \sum_{i} \chi(\tilde{\nu}_{0} - \epsilon_{i} - \tilde{\nu}_{0})}$$

$$\partial r(\tilde{\nu}_{0}) = \frac{8 \epsilon^{2} \chi(\tilde{\nu}_{0})}{3000(\chi(\tilde{\nu}_{0}) + \alpha / 24 \sum_{i} \chi(\tilde{\nu}_{0} - \epsilon_{i} - \tilde{\nu}_{0})}$$

$$(\tilde{\nu}_{0}, \epsilon) \approx \frac{\chi_{\tilde{\nu}_{0}}}{\chi_{\tilde{\nu}_{0}} - 1 \chi_{\tilde{\nu}_{0}}}$$

- Both χ and P_{ϵ} must be treated anharmonically at the VPT2 level

2. J. Bloino, M. Biczysko, V. Barone, JCTC 8, 1015 (2012)

Vibrational spectroscopy

Transition intensities

- Anharmonic vibrational IR, VCD and Raman spectra
 - IR: Molar extinction coefficient, $\chi(\tilde{\nu}_{0})$
 - VCD: Difference in molar extinction coefficient, $\Delta \chi(\tilde{\nu}_{0})$
 - Raman: Scattering $\partial r(\tilde{\nu}_{0})/\partial \Omega$
Transition intensities: transition dipole moment

- Generalized formulation for the transition dipole moment:

\[
P^{(n)} = P_0 + P_1 + \sum_{i} P_i + \sum_{ij} P_{ij} + \sum_{ijk} P_{ijk}
\]

- \(S_0, S_1, S_2, P_0, P_1, P_{ij}, P_{ijk} \) and \(S \) are property-dependent.

Vibrational spectroscopy

- Development using the Rayleigh-Schrödinger perturbation theory

\[
P^{(n)} = \left(P_0^{(n)} + \lambda P_1^{(n)} + \lambda^2 P_2^{(n)} \right)
\]

VPT2 for medium-to-large systems

- PES: polynomial of 4th order containing at most three independent normal coordinates
- Vibrational energy levels
 - \(K_{ij} \): set of anharmonic constants
 - \(E_0 \): simple function of 3rd \((K_{ij})\) and semi-diagonal 4th \((K_{ij})\) energy derivatives with respect to normal modes
- Energy third and semi-diagonal fourth derivatives are computed numerically

\[
K_{ij} = K_{ij}(v_0) - K_{ij}(v_0 - 1) + K_{ij}(v_0 - 1) - 2K_{ij}(0)
\]

- Computational cost grows quickly with the system size!

Solutions to limit computation cost

- Hybrid models
- Reduced-dimensionality

Thermodynamics beyond harmonic approximation

- Simple perturbation theory applied to the vibrational partition function

\[
Q_{ib} = \frac{1}{\prod_{i=1}^{N} (1 - e^{-\beta \chi_i})}
\]

- \(\nu_i \): Wavenumber frequency of the \(i \)-th fundamental band,
- \(\nu_i \): Anharmonic ZPVE,
- \(E_0 \): Energy third and semi-diagonal fourth derivatives are computed numerically

VPT2 for small systems

- PES: polynomial of 4th order containing at most three independent normal coordinates
- Vibrational energy levels
 - \(K_{ij} \): set of anharmonic constants
 - \(E_0 \): simple function of 3rd \((K_{ij})\) and semi-diagonal 4th \((K_{ij})\) energy derivatives with respect to normal modes
- Energy third and semi-diagonal fourth derivatives are computed numerically

\[
K_{ij} = K_{ij}(v_0) - K_{ij}(v_0 - 1) + K_{ij}(v_0 - 1) - 2K_{ij}(0)
\]

- Computational cost grows quickly with the system size!

Solutions to limit computation cost

- Hybrid models
- Reduced-dimensionality

1. J. Bloino, M. Biczysko, V. Barone, JCTC 8, 1015 (2012)
Reduced dimensionality models

• Displacement along selected vibrations
 - set of M normal modes for which anharmonic frequencies will be evaluated
 - spectra range of interest, most intense (observed) vibrations, molecular probe etc.

• Anharmonic constants K_{ij}
 - index i corresponds to an active mode
 - cubic force constants K_{ij} where index i is present at least once (i.e. K_{ii}, K_{ij}, K_{ij}, K_{ik})
 - along with all semi-diagonal quartic force constants $K_{ij}^{(2)}$
 - All K_{ij} and $K_{ij}^{(2)}$ can be computed with 1M approach

• Difference wrt full treatment
 - some limited number cubic force constants (terms including only i and j indices) not evaluated
 - non-resonant terms (treatment of Fermi resonances not affected)
 - important ONLY if vibrations j,k and i are coupled
 - vibrations mainly localized on the same region of a molecular system (e.g. functional group) and with similar frequencies

• Practical recipe to select normal modes to be considered simultaneously
 - nature of the vibrations and energy range
 - Reduced dimensionality schemes well-suited to study environment effects
 - adsorption, solute-solvent interactions

Reduced GVPT2 scheme: validation

• IR spectra of anisole
 - Full dimensional (All Modes) GVPT2
 - good accuracy
 - MUE (mean unsigned error) wrt experiment 9 cm$^{-1}$

• Reduced (N modes) approach
 - 27 over 42 modes can be computed with 1M approach
 - coupled modes, eg. CH$_3$ stretchings
 - graphical representation of couplings
 - absolute value of the cubic force constants K_{ij}

PES generation:

• Semi-diagonal Quartic Force Field
 - Energy third and semi-diagonal fourth derivatives are computed numerically

Basic requirements
 - Tight optimization criteria
 - Ultrafine Grid (DFT) + SCF tight

Example: H$_3$CO

<table>
<thead>
<tr>
<th>mode</th>
<th>Opt=tight Int=Uf</th>
<th>Opt Int</th>
<th>Opt=tight Int</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_1</td>
<td>2881.6 -152.7</td>
<td>2881.8 -161.1</td>
<td>2881.0 -152.7</td>
</tr>
<tr>
<td>v_2</td>
<td>1816.0 -26.3</td>
<td>1816.2 -26.8</td>
<td>1816.0 -26.3</td>
</tr>
<tr>
<td>v_3</td>
<td>1532.4 -33.0</td>
<td>1532.5 -33.6</td>
<td>1532.5 -33.6</td>
</tr>
<tr>
<td>v_4</td>
<td>1200.1 -18.0</td>
<td>1200.3 -17.9</td>
<td>1200.3 -18.0</td>
</tr>
<tr>
<td>v_5</td>
<td>2937.5 -125.3</td>
<td>2937.7 -261.3</td>
<td>2936.8 -124.9</td>
</tr>
<tr>
<td>v_6</td>
<td>1266.6 -21.3</td>
<td>1266.7 -21.5</td>
<td>1266.7 -21.3</td>
</tr>
</tbody>
</table>

Vibrational frequencies

• Harmonic frequencies and anharmonic contributions B3LYP vs CCSD(T)

<table>
<thead>
<tr>
<th>B3LYP</th>
<th>harm</th>
<th>anh</th>
<th>hybrid</th>
</tr>
</thead>
<tbody>
<tr>
<td>MN</td>
<td>25</td>
<td>28</td>
<td>26</td>
</tr>
<tr>
<td>MAX</td>
<td>+108</td>
<td>+142</td>
<td>+39</td>
</tr>
<tr>
<td>MUE</td>
<td>30</td>
<td>30</td>
<td>7</td>
</tr>
</tbody>
</table>

• DFT vs Experiment
 - Hybrid CC/DFT models vs Experiment

Overall good accuracy + applicability to larger systems
Vibrational spectroscopy

Geneva 2013

- **Example: glycine**
 - Vibration energies in vacuum (in cm⁻¹)
 - Computational model: B3LYP/aug-107D

<table>
<thead>
<tr>
<th>mode</th>
<th>Harm.</th>
<th>GV</th>
<th>VPT2</th>
<th>DCP</th>
<th>HDC</th>
<th>Exp.</th>
<th>Assign.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν1</td>
<td>3750</td>
<td>3568</td>
<td>3568</td>
<td>3565</td>
<td>3566</td>
<td>3585</td>
<td>OH str.</td>
</tr>
<tr>
<td>ν2</td>
<td>3582</td>
<td>3407</td>
<td>3407</td>
<td>3404</td>
<td>3403</td>
<td>3410</td>
<td>NH2 (A) str.</td>
</tr>
<tr>
<td>ν3</td>
<td>3509</td>
<td>3387</td>
<td>3353</td>
<td>3304</td>
<td>3350</td>
<td>-</td>
<td>NH2 (S) str.</td>
</tr>
<tr>
<td>ν4</td>
<td>3079</td>
<td>2929</td>
<td>2929</td>
<td>2926</td>
<td>2926</td>
<td>2925</td>
<td>CH3 (A) str.</td>
</tr>
<tr>
<td>ν5</td>
<td>3044</td>
<td>2938</td>
<td>2933</td>
<td>2911</td>
<td>2910</td>
<td>2918</td>
<td>CH3 (S) str.</td>
</tr>
</tbody>
</table>

- Mean Unsigned Error (MUE) and largest absolute error ([MAX]) are calculated with respect to VPT2 for ALL normal modes.
- DCP: problems for strong couplings between low- and high-frequency vibrations occur (k-large and ε-large), also toluene CH2.

Building blocks of biomolecules: closed-shell

- **Can integrated CC and CC/DFT schemes shed light on the observation of elusive glycine conformers?**

- **Accurate**
 - structure (Rₐ)
 - thermodynamic (∆H, ∆G)
 - spectroscopic parameters
 - Bₚ, DₚK, IR, Raman...

CC/DFT for spectroscopy and thermodynamics

- Glycine conformers: IIlp and Iln [1]
- CC/DFT conformational energies wrt most stable IP, T=410 K
 - CCSD(T)/CBS+CV conformational energies, harmonic frequencies, B3LYP/SMD anharmonic contributions computed by means of the HDCPT2[2] model, in conjunction with simple perturbation theory (SPT)[3].

<table>
<thead>
<tr>
<th>Iln mol⁻¹</th>
<th>IIlp</th>
<th>ZPVE</th>
<th>RRHO*</th>
<th>HRAD** SPT Exp.</th>
<th>RRHO*</th>
<th>HRAD** SPT Exp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.81</td>
<td>4.74</td>
<td>7.48</td>
<td>7.94</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Accurate computations of entropy contributions require the proper treatment of low-frequency torsional motions and anharmonic effects.

CC/DFT for spectroscopy: closed-shell

- IR Vibrational frequencies and IR intensities of Ip/tt conformer [1]
 - CCSD(T)/CBS+CV harmonic frequencies.

<table>
<thead>
<tr>
<th>mode</th>
<th>B3LYP</th>
<th>B3LYP-D3</th>
<th>M05-2X</th>
<th>CC/B3LYP</th>
<th>Exp.</th>
<th>Assign.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν1</td>
<td>3582</td>
<td>3582</td>
<td>3582</td>
<td>3582</td>
<td>3582</td>
<td>sc*</td>
</tr>
<tr>
<td>ν2</td>
<td>3533</td>
<td>3535</td>
<td>3535</td>
<td>3535</td>
<td>3535</td>
<td>anh</td>
</tr>
<tr>
<td>ν3</td>
<td>3470</td>
<td>3473</td>
<td>3473</td>
<td>3473</td>
<td>3473</td>
<td>sc**</td>
</tr>
<tr>
<td>ν4</td>
<td>2925</td>
<td>2925</td>
<td>2925</td>
<td>2925</td>
<td>2925</td>
<td>anh</td>
</tr>
</tbody>
</table>

- Mean absolute error (MAE) and largest absolute error ([MAX]) with respect to experiment or CC results.

CC/DFT for spectroscopy: closed-shell

- MAX and MAE calculated for ALL normal modes
 - Mean absolute error (MAE) and largest absolute error ([MAX]) with respect to experiment or CC results.

Best-estimated MI-IR spectra for the main and trideuterated [OD,ND2] glycine isotopologue.
- CC/DFT(D/C)/CI harmonic frequencies, B3LYP/SNSD anharmonic contributions computed by means of the GPAW/GVPT2[2] model.
- Spectra convoluted using Lorentzian functions with a half-width at half maximum (HWHM) of 1 cm⁻¹.

Experimental IR spectra recorded in the low-temperature Ar matrix.

Theory: IVn/gtt 'missing' conformer easier detected for [OD,ND2] .
- Ip shows less intense features.
- Increased energy gap between the IVn fundamental and Ip overtones.
- A higher percentage of IVn in the experimental mixture.

Experimental data: Isolated molecule B3LYP/aug-cc-pVTZ. Simulate also CCSD(T)/CH

Experimental data: Isolated molecule B3LYP/aug-cc-pVTZ. Simulate also CCSD(T)/CCH

Vibrational spectroscopy

Reduced GVPT2 scheme

Glycine vs Glycine@Si(100)
- Reduced dimensionality computation: all bands of glycine [24] and their shift upon adsorption on Si12 cluster (total 117 modes); B3LYP/aug-CC
- Experimental data: Isolated molecule – FTIR; Glycine@Si(100) High Resolution Electron Energy Loss Spectroscopy (HREELS)

Experimental data: Isolated molecule B3LYP/aug-cc-pVTZ. Simulate also CCSD(T)/CCH

B3LYP/SNSD harmonic frequencies, B3LYP/aug-cc-pVTZ anharmonic contributions computed by means of the GPAW/GVPT2[2] model.

Spectra convoluted using Lorentzian functions with a half-width at half maximum (HWHM) of 1 cm⁻¹.
Vibrational spectra of large systems

- Glycine@Si(100)
 - Reduced dimensionality computation: all bands of glycine (24) and their shift upon adsorption on Si$_{15}$ cluster (total 117 modes); B3LYP/aug-N07D.

| Label | Asm | Exp | ν | K_{ij} | $\Sigma |K_{ij}|$ | $|K_{ij}|_{max}$ | λ |
|-------|-----|-----|------|---------|-----------|----------------|------|
| 117 | v(NH)$_{as}$ | 3460 | 3419 | 181 | 2392 | 1643 | 116 |
| 116 | v(NH)$_{as}$ | 3410 | 3379 | 1623 | 470 | 101 | 80 |
| 115 | v(CH)$_{as}$ | 3040 | 2932 | 1422 | 1381 | 934 | 114 |
| 114 | v(CH)$_{as}$ | 2940 | 2901 | 1620 | 774 | 398 | 115 |
| 112 | v(SiH) | 2115 | 2110 | 1124 | 884 | 142 | 107 |

Validity check: K_{ij} small: OK; K_{ij} large: some coupling (e.g., if K_{ij} also large) can not be neglected.

- Coupling with Si$_{15}$H$_{16}$ cluster vibrations
 - Stretching Si-H: $|K_{ij}|_{max} = 142$ cm$^{-1}$, OK can be safely neglected.
 - All other modes of glycine, the largest $|K_{ij}|_{max} = 122$ cm$^{-1}$, OK can be safely neglected.
 - CH$_2$ asymmetric stretch: coupled to $v(CH)_2$: included, OK, larger discrepancy ??

Computed vs Experimental spectra
- Vibrational freq in cm$^{-1}$, Intensities in km/mol, GVPT2/DVPT2, DFT/aug-N07D
- Mean Absolute Error (MAE), and largest negative (MIN) and positive (MAX) deviations with respect to experiment (Ar Matrix, S. Breda et al. J. Mol. Struct. 786, 193 (2006))

![Graph showing computed vs experimental spectra](image)

Mean Absolute Error (MAE), and largest negative (MIN) and positive (MAX) deviations with respect to experiment

<table>
<thead>
<tr>
<th></th>
<th>MIN</th>
<th>MAX</th>
<th>MAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAM</td>
<td>-7</td>
<td>49</td>
<td>19</td>
</tr>
<tr>
<td>CC'</td>
<td>-17</td>
<td>17</td>
<td>6</td>
</tr>
<tr>
<td>BSVP</td>
<td>-36</td>
<td>40</td>
<td>11</td>
</tr>
<tr>
<td>CC'</td>
<td>-20</td>
<td>15</td>
<td>6</td>
</tr>
</tbody>
</table>

Non-equilibrium implicit solvent
- Case of pyrimidine
- Non-equilibrium approach simulates the slower reorganization of the solvent molecules with respect to the vibrations.

Computation: B3LYP/aug-N07D, Broadening: Lorentzian, HWHM=4cm$^{-1}$

Experiment: 10% in CCl$_4$ (3800-1370), 10% in CS$_2$ (1370-450)

CC/DFT for spectroscopy: open-shell

**IR and Raman harmonic and anharmonic spectra C$_6$H$_5$ and C$_6$D$_5$123
- CCSD(T)/aug-cc-pVTZ harmonic frequencies,

IR and Raman harmonic

![Graph showing IR and Raman harmonic spectra of phenyl radical](image)

Exceptional cases (e.g. v_{23} of C$_6$D$_5$)
- Less certain assignment

Reinvestigation?
- with the help of fully anharmonic IR and/or Raman spectra
- accounting for the species possibly present in the experimental mixture
- including a few sets of isotopically substituted precursors

CC/DFT for spectroscopy: open-shell

IR spectra of phenyl radical

![Graph showing IR spectra of phenyl radical](image)

CC/DFT for spectroscopy: open-shell

Non-equilibrium implicit solvent
- Case of pyrimidine
- Non-equilibrium approach simulates the slower reorganization of the solvent molecules with respect to the vibrations.

Computation: BSVP/aug-N07D, Broadening: Lorentzian, HWHM=4cm$^{-1}$

Experiment: 10% in CCl$_4$ (3800-1370), 10% in CS$_2$ (1370-450)

CC/DFT for spectroscopy: open-shell

**IR and Raman harmonic and anharmonic spectra C$_6$H$_5$ and C$_6$D$_5$123
- CCSD(T)/aug-cc-pVTZ harmonic frequencies +IR intensities,

Overall accuracy
- C$_6$H$_5$: (MAX): 32 cm$^{-1}$ MAE: 8 cm$^{-1}$ for 24 normal modes
- C$_6$D$_5$: (MAX): 38 cm$^{-1}$ MAE: 11 cm$^{-1}$ for 16 normal modes

Exceptional cases (e.g. v_{23} of C$_6$D$_5$)
- Less certain assignment

Reinvestigation?
- with the help of fully anharmonic IR and/or Raman spectra
- accounting for the species possibly present in the experimental mixture
- including a few sets of isotopically substituted precursors

CC/DFT for spectroscopy: open-shell

IR spectra of phenyl radical

![Graph showing IR spectra of phenyl radical](image)

CC/DFT for spectroscopy: open-shell

**IR and Raman harmonic and anharmonic spectra C$_6$H$_5$ and C$_6$D$_5$123
- CCSD(T)/aug-cc-pVTZ harmonic frequencies +IR intensities,

Overall accuracy
- C$_6$H$_5$: (MAX): 32 cm$^{-1}$ MAE: 8 cm$^{-1}$ for 24 normal modes
- C$_6$D$_5$: (MAX): 38 cm$^{-1}$ MAE: 11 cm$^{-1}$ for 16 normal modes

Exceptional cases (e.g. v_{23} of C$_6$D$_5$)
- Less certain assignment

Reinvestigation?
- with the help of fully anharmonic IR and/or Raman spectra
- accounting for the species possibly present in the experimental mixture
- including a few sets of isotopically substituted precursors

CC/DFT for spectroscopy: open-shell

IR spectra of phenyl radical

![Graph showing IR spectra of phenyl radical](image)
Vibrational spectra: GVPT2/DVPT2

IR and Raman spectra of Thymine

- Computation: B3LYP/SNSD, vacuum, Broadening: Lorentzian, HWHM=1cm⁻¹

Example: R-methyloxirane

- Computation: B3LYP/aug-N07D, vacuum, Broadening: Lorentzian, HWHM=2cm⁻¹
- Experiment: Stephens et al.² (CCl₄ solution)

Anharmonic intensities:
- Assignment!
- Line-shape

Butane anti- and gauche- conformer abundances at 298 K
- B3LYP/SNSD; Spectra GVPT2/DVPT2; ΔG=SPT/HDCPT2, 64% anti-, 36% gauche-

VCD spectrum

Example: R-methyloxirane

- Computation: B3LYP/aug-N07D, vacuum, Broadening: Lorentzian, HWHM=2cm⁻¹
- Experiment: Stephens et al.² (CCl₄ solution)

Anharmonic intensities:
- Sign/features
- Assignment

Mixture: anharmonic IR and Raman spectra

Geneva 2013
Mixture: Molecule+complexes

Example: IR and Raman spectra of formic acid (+ dimers)

- Computation: B3LYP/aug-cc-pVDZ, vacuum, Broadening: Lorentzian, HWHM=2 cm⁻¹

Vibrational spectra: GVPT2/DVPT2

Solvent and anharmonic effects: IR

- Non-equilibrium implicit solvent¹: Case of α-pinene²
 - Computation: PCM with vibrational nonequilibrium and local field effects, B3LYP/aug-cc-pVDZ

Vibrational spectroscopy

Solvent effects: VCD

- Anharmonic calculations: gas phase vs pure liquid for α-pinene² (800-1350 cm⁻¹)
 - Computation: PCM with vibrational nonequilibrium and local field effects, B3LYP/aug-cc-pVTZ

Reduced GVPT2 scheme

Large molecular systems – spectra range

- IR spectra of chlorophyll-a cation in tetrahydrofuran (THF) solution
 - 186 normal modes
 - Limited dimensionality anharmonic treatment: spectrum window related to the C=O vibrations

Status of the Multi-purpose virtual spectrometer

- **Computational Strategies for Spectroscopy**
 - from Small Molecules to Nano Systems,
 - Edited by V. Barone,

- **PCCP Cover Article**
 - Barone et al. Implementation and validation of a multi-purpose virtual spectrometer for large systems in complex environments
 - PCCP Themed issue: Theoretical chemical physics of biological systems

Acknowledgements

V. Barone, C. Cappelli, I. Carnimeo, L. Carta, T. Fornaro, D. Licari (SNS)
J. Bloiko, F. Santoro, G. Prampolini, A. Ferretti, S. Monti (CNR)
I. Cacelli (UniPi)
C. Puzzarini (Unibo)
O. Crescenzi (UniNa)
M. Becucci, G. Pietrapertosa, M. Pasquini, G. Piani, F. Mazzoni, N. Schiccheri (LENS)