

Objective

- an easy-to-use and reliable tool to compute spectroscopic data beyond the harmonic level,
- in particular:
 - · vibrational averages of a wide range of properties
 - vibrational energy level (transition energies)
 - transition integrals (band intensities)

Requirements

- cost-effective
- usable as a black-box procedure
- able to account for environmental effects (solvent)
- scalable (memory, computational time) to sizeable molecular systems

- adsorption, solute-solvent interactions

 - DCPT2: problems for strong couplings between low- and highfrequency vibrations occur (k-large and ε-large), also toluene CH₃

a) All terms are taken into account, even if near-resonant

 [1] V. Barone, M. Biczysko, J. Bloino, C. Puzzarini, J. Chem. Theory Comput, 9, 1533–1547(2013), PCCP, DOI: 10.1039/c3cp50439e (2013)

 [2] J. Boino, M. Biczysko, V. Barone, J. Chem. Theory Comput, 8, 1015–1036 (2012)
 * Harmonic Oscillator Rigid Rotor

 [3] D. G. Truihar, A. D. Isazason, J. Chem. Phys., 94, 357–359 (1991)
 * Anharmonic Oscillator Rigid Rotor

	CC/DFT for spectroscopy : closed-shell											
CC/DFT IR anharmonic spectra of glycine: Accuracy												
IR Vibrational frequencies and IR intensities of Ip/ttt conformer [1] – CCSD(T)/CBS+CV harmonic frequencies,												
	B3Ľ	YP	B3LY	P-D3	M05-2X		CC/B3LYP	Exp.	Assign.			
mode	sc*	anh	sc*	anh	sc**	anh	anh	Gas/Ar	Assign.			
ν ₁	3590	3551	3593	3554	3582	3634	3575	3585	OH str.			
ν ₂	3434	3403	3433	3403	3443	3473	3418	3410	NH ₂ (A) str.			
ν ₃	3363	3356	3362	3355	3432	3428	3367	3359	NH ₂ (S) str.			
ν ₄	2958	2931	2953	2925	3045	3030	2961	2969	CH ₂ (A) str.			
v_5	2923	2924	2917	2918	3008	3023	2947	2943	CH ₂ (S) str.			
v_6	1745	1784	1739	1781	1798	1841	1774	1779	C=O str.			
MAX	65	38	66	55	76	200	20					
NUE	18	11	19	14	25	57	8					
 MAX and MAE calculated for ALL normal modes Mean absolute error (MAE) and largest absolute error ([MAX]) with respect to 												

experiment or CC results

Experimental data for 23 over total of 24 normal modes
 V. Barone, M. Biczysko, J. Bloino, C. Puzzarini, JCTC, 9, 1533–1547(2013), PCCP. (2013), PCCP 15, 1358-1363 (2013) [2] J. Bloino, V.

Barone, J. Chem. Phys. 136 124108 (2012), V. Barone J. Chem. Phys. 122, 014108 (2005)

(2013) [2] J. Bloino, V. Barone, J. Chem. Phys. 136 124108 (2012), V. Barone J. Chem. Phys. 122, 014108 (2005)

		Geneva 2013										
	Full and reduced GVPT2											
Glycine B3LYP/aug-N07D. IRReduced												
mode	Ass.	ALL	1M	5M	K _{iii}	$\Sigma \mathbf{K}_{iij} $	K _{iij} max	j_{max}	(in the second s			
24	v(OH)	3568	3561	3561	2570	289	96	14				
23	$v(NH_2)a$	3407	3048	3393	1623	2255	1645	22	ensity (
22	$v(NH_2)s$	3387	3345	3342	1617	302	114	10	.щ Щ			
21	$v(CH_2)a$	2929	2859	2931	1647	1405	120	20				
20	$v(CH_2)s$	2938	2916	2913	1345	134	25	16				
	MAE	10	84	16					Frequency (cm ⁻¹)			

- Validity check: K_{iij} small: OK, : K_{iij} large some coupling (eg. if K_{jjj} also large) can not be neglected,
- Coupling with Si₁₅H₁₆ cluster vibrations
 - stretching Si–H , |Kiij|max = 142cm⁻¹, OK can be safely neglected
 - all other modes of glycine, the largest |Kiij|max = 122cm⁻¹, OK can be safely neglected
- CH₂ asymmetric stretch: coupled to v(CH₂)s: included, QK, larger discrepancy ??
- 1. V. B., M. B., J. B., M. Borkowska-Panek, I. Carnimeo, P. Panek, Int. J. Quantum. Chem. 112, 2185 (2012)

I. Carnimeo, M.Biczysko, J. Bloino, V. Barone PCCP 13, 16713-16727 (2011)

Geneva 2013

[1] V. Barone, M. Biczysko, J. Bloino, F. Egidi, C. Puzzarini, J. Chem. Phys. 138, 234303 (2013) [2] J. Bloino, V. Barone, J. Chem. Phys. 136 124108 (2012), V. Barone J. Chem. Phys. 122, 014108 (2005)

Vibrational spectra: GVPT2/DVPT2

Non-equilibrium implicit solvent¹: Case of pyrimidine

- Experiment: 10% in CCl₄ (3800-1370), 10% in CS₂ (1370-450)

molecules with respect to the vibrations.

Solvent effects

Non-equilibrium approach simulates the slower reorganization of the solvent

- Computation: B3LYP/aug-N07D, Broadening: Lorentzian, HWHM=4cm⁻¹

IR and Raman spectra of phenyl radical IR and Raman harmonic and anharmonic spectra C₆H₅ and C₆D₅ - CCSD(T)/aug-cc-pVTZ harmonic frequencies, - B3LYP/SNSD anharmonic contributions computed by the GVPT2/DVPT2[2] model IR Raman Δnl Ant Harm Harm

2000 1900 1800 1700 1600 1500 1400 1300 1200 1100 1000 900 80(2000 1900 1800 1700 1600 1500 1400 1300 1200 1100

[1] V. Barone, M. Biczysko, J. Bloino, F. Egidi, C. Puzzarini, J. Chem. Phys. 138, 234303 (2013) [2] J. Bloino, V. Barone, J. Chem. Phys. 136 124108 (2012), V. Barone J. Chem. Phys. 122, 014108 (2005)

CC/DFT for spectroscopy : open-shell

