

Vibronic	spectroscop	y: Theoretica	al framework							
Equivalency table for the properties										
OPA: Molar absorption coefficient ($I=\epsilon$)										
$\alpha = \frac{10\pi N_A}{3\epsilon_0 \ln(10)\hbar c}$	$\beta = 1$	$\gamma = m$	$d_{Amn} = d_{Bmn} = \mu_{mn}$							
OPE: Energy emitted by one mole per second ($I = I_{em}/N_n$)										
$\alpha = \frac{2}{3\epsilon_0 c^3}$	$\beta = 4$	$\gamma = n$	$d_{Amn} = d_{Bmn} = \mu_{mn}$							
ECD: Difference of molar absorption coefficient ($l=\Delta \epsilon$)										
$\alpha = \frac{40\pi N_A}{3\epsilon_0 \ln(10)\hbar c}$	$\beta = 1$	$\gamma = m$	$d_{Amn} = \mu_{mn}$	$\boldsymbol{d}_{Bmn}=\Im(\boldsymbol{m}_{mn})$						
CPL: Difference of energy emitted by one mole per second ($I = \Delta I_{em}/N_n$)										
$\alpha = \frac{8}{3\epsilon_0 c^4}$	$\beta = 4$	$\gamma = n$	$d_{Amn} = \mu_{mn}$	$\boldsymbol{d}_{Bmn}=\Im(\boldsymbol{m}_{mn})$						
1. J. Bloino, M. Biczysko, F. Santoro, V. Barone, JCTC, 6, 1256 (2010)										

Electronic spectra

• VE

- Intensity = hight

Vibronic

Relative intensity of electronic transitions

states with similar oscillator strength - similar band

- Line-shape determined by vibrational pattern

Vertical vs vibronic

State

S1

S6

λ (nm)

263

369

0.17

0.20

12

	Electro	nic spectros	scopies								
Anharmonic frequencies in excited states											
The photoionisation spectrum of furan											
– B3LYP/SNSD											
					معرفه ومعامده						
	Frequenc	les directiv	y compute	ed (VPTZ)	and extrap	0018	ted (VPT2+FC)				
	Initial State		Final State								
Mode	harm	anh VPT2	harm	anh VPT2	anh VPT2+FC	Δ	[MAX]: 15 cm ⁻¹				
ν,	614	603	486	476	477	1					
v2	620	608	500	491	491	-1	MAE: 2.7 cm ⁻¹				
ν ₃	729	715	768	750	754	3					
V4	755	742	792	779	779	0					
ν ₅	843	829	854	838	840	3	Mean absolute				
V ₆	873	862	881	867	869	2	error (MAE) and				
V7	896	874	907	885	886	0	largest absolute				
V ₈	899	877	977	951	953	2	error (MAX)				
V9	1018	994	1011	987	988	1					
V ₁₀	1065	1037	1041	1019	1014	-5					
V ₁₁	1086	1065	1063	1041	1042	1					
V ₁₂	1165 1189	1142 1166	1116 1166	1094	1095	1 2	// \\				
V ₁₃	1189	1166	1166	1141 1269	1142	0	y y				
V ₁₄	1285	1259	1296	1269	1270	-7	<u>`o</u> ´				
V ₁₅	1410	1379	1403	1379	1372	-/	-				
V ₁₆	1512	1478	1452	1405	1420	4					
V ₁₇ V ₁₈	3247	3121	3247	3119	3121	2					
V ₁₈ V ₁₉	3258	3131	3256	3127	3129	2					
v ₁₉ v ₂₀	3285	3157	3259	3130	3132	2					

