

Vibronic spectroscopy: Theoretical framework										
Equivalency table for the properties										
OPA: Molar absorption coefficient ($I=\epsilon$)										
$\alpha = \frac{10\pi N_A}{3\epsilon_0 \ln(10)\hbar c}$	$\beta = 1$	$\gamma = m$	$d_{Amn} = d_{Bmn} = \mu_{mn}$							
OPE: Energy emitted by one mole per second ($I = I_{em}/N_n$)										
$\alpha = \frac{2}{3\epsilon_0 c^3}$	$\beta = 4$	$\gamma = n$	$d_{Amn} = d_{Bmn} = \mu_{mn}$							
ECD: Difference of molar absorption coefficient ($l=\Delta \epsilon$)										
$\alpha = \frac{40\pi N_A}{3\epsilon_0 \ln(10)\hbar c}$	$\beta = 1$	$\gamma = m$	$d_{Amn} = \mu_{mn}$	$\boldsymbol{d}_{Bmn} = \Im(\boldsymbol{m}_{mn})$						
CPL: Difference of energy emitted by one mole per second ($I = \Delta I_{em}/N_n$)										
$\alpha = \frac{8}{3\epsilon_0 c^4}$	$\beta = 4$	$\gamma = n$	$d_{Amn} = \mu_{mn}$	$\boldsymbol{d}_{Bmn} = \Im(\boldsymbol{m}_{mn})$						
1. J. Bloino, M. Biczysko, F. Santoro, V. Barone, JCTC, 6, 1256 (2010)										

depend on the system

0-0

Energy [eV]

	Electronic spectroscopies										
Anharmonic frequencies in excited states											
 The photoionisation spectrum of furan 											
 Frequencies directly computed (VPT2) and extrapolated (VPT2+FC) 											
	Initial State		Final State								
Mode	harm	anh VPT2	harm	anh VPT2	anh VPT2+FC	٨	IMAXI: 15 cm ⁻¹				
ν,	614	603	486	476	477	1					
v,	620	608	500	491	491	-1	MAE: 2.7 cm ⁻¹				
V3	729	715	768	750	754	3					
V4	755	742	792	779	779	0					
V ₅	843	829	854	838	840	3	Mean absolute				
V ₆	873	862	881	867	869	2	error (MAF) and				
V7	896	874	907	885	886	0	largest absolute				
V ₈	899	877	977	951	953	2	error (IMAXI)				
V9	1018	994	1011	987	988	-					
V ₁₀	1005	1037	1041	1019	1014	-5					
v ₁₁	1080	1003	1005	1041	1042	1					
V ₁₂	1189	1142	1166	1054	1055	2					
V13	1285	1259	1296	1269	1270	0					
14 V.r	1410	1379	1403	1379	1372	-7	0				
V16	1512	1478	1452	1405	1420	15					
v ₁₇	1597	1557	1515	1473	1477	4					
V ₁₈	3247	3121	3247	3119	3121	2					
V ₁₉	3258	3131	3256	3127	3129	2					
V ₂₀	3285	3157	3259	3130	3132	2					

