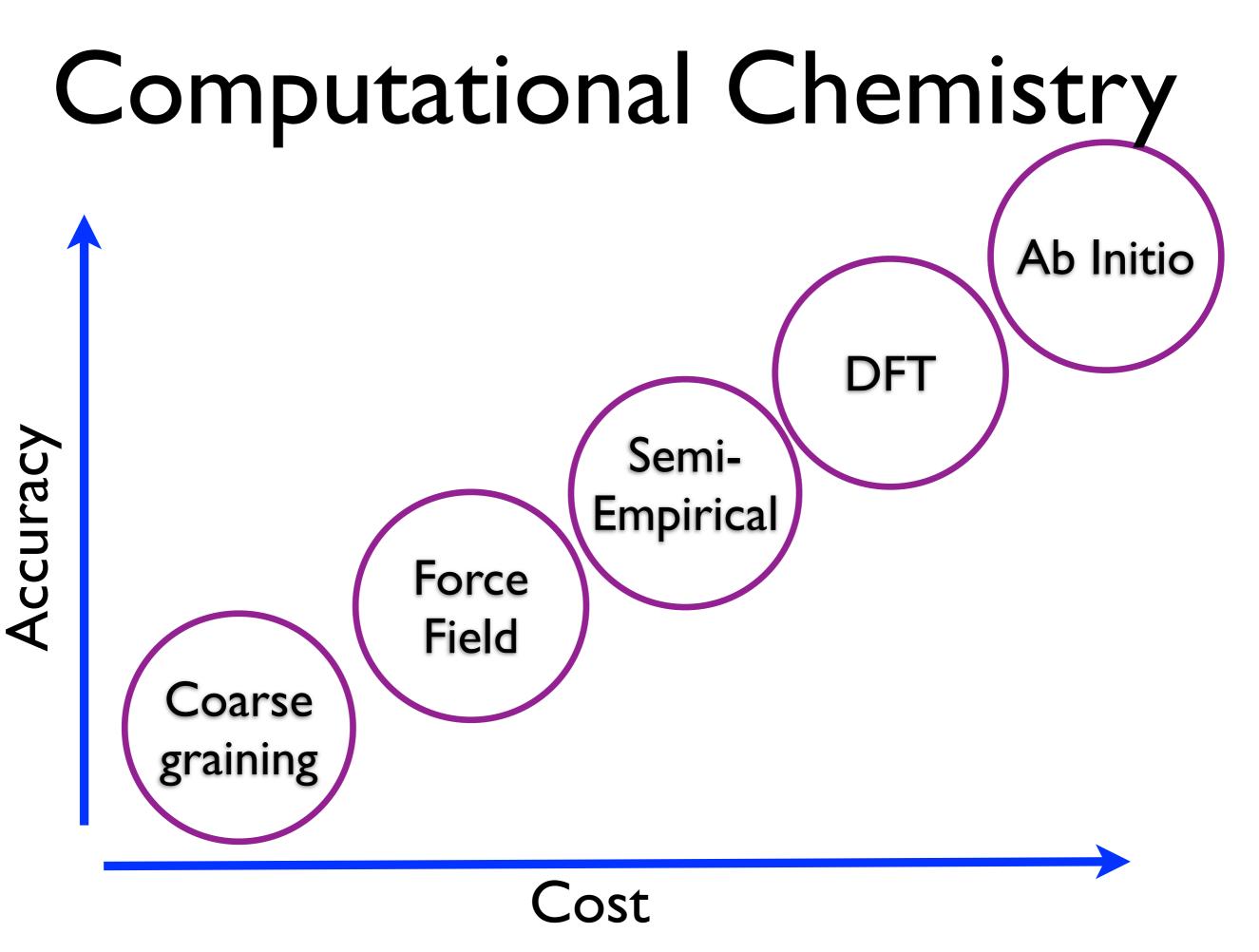
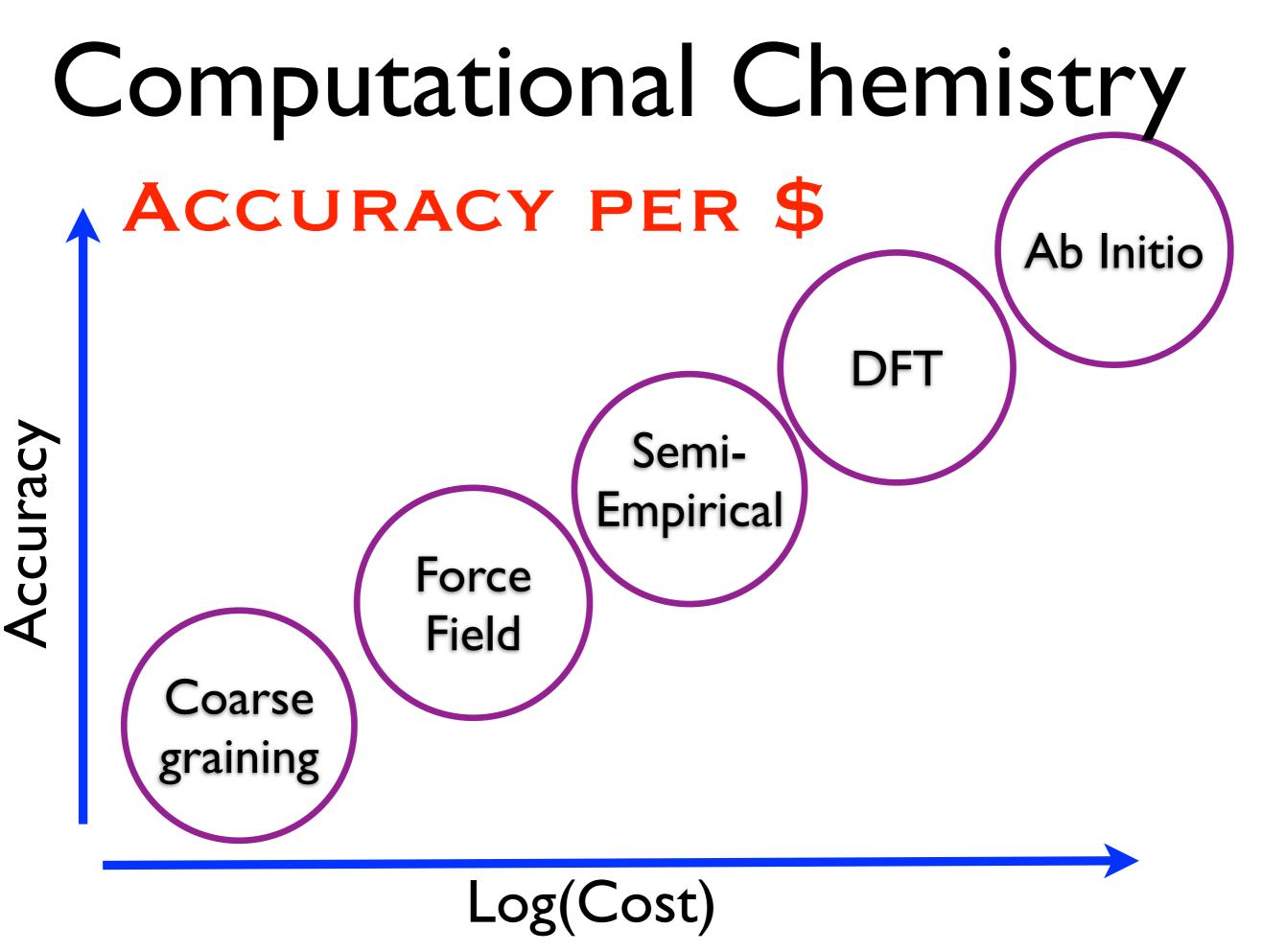
From Dynamics to Thermodynamics using Molecular Simulation

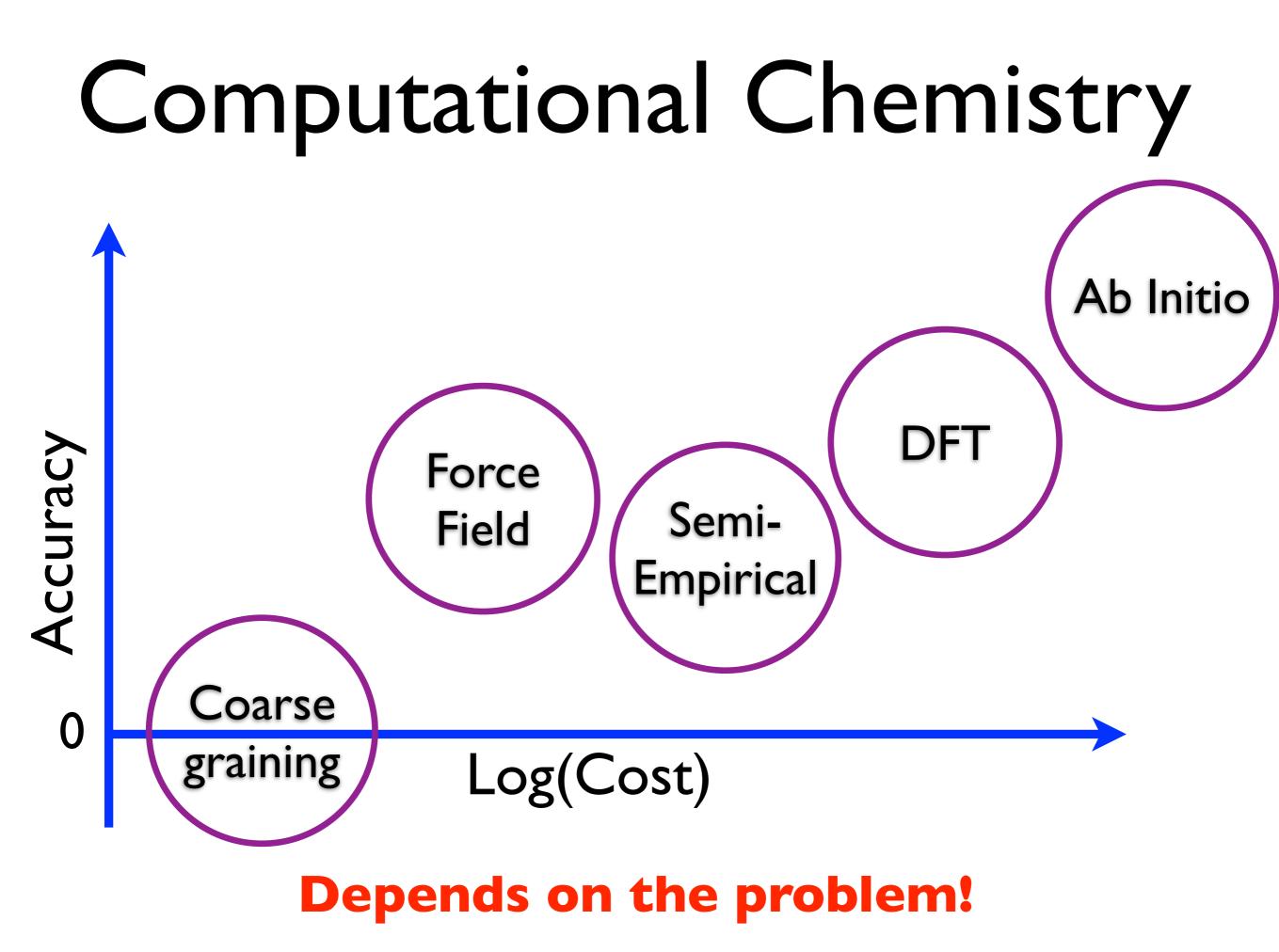
David van der Spoel

tisdag 18 december 12


Computational Chemistry


- * Physical models to describe molecules
- ***** Software to evaluate models and do predictions GROMACS
- * Model validation and development
- * Applications in Chemistry Water & other liquids
- * (Applications in Biology PitGP, Virus, Malaria)

Computational Chemistry


* Ab-initio methods

- * Density functional theory
- * Semi-empirical
- ***** Atomistic Force field
- * Coarse grained FF / QSAR / Continuum descriptions

tisdag 18 december 12

What is Molecular Dynamics

- Coordinates of atoms/particles as a function of time
- Time correlation functions
- Experimental: Nuclear Magnetic Resonance spectroscopy
- Computer simulations at different levels of spatial and temporal accuracy
- Sampling the conformational space partition function

$$U = \sum_{All Bonds} \frac{1}{(b-b_0)^2} + \sum_{All Angles} \frac{1}{(b-b_0)^2} + \sum_{All Angles} \frac{1}{(b-b_0)^2} + \sum_{All Angles} \frac{1}{(b-b_0)^2} + \sum_{All Torsion Angles}$$

Fig. 1 The total potential energy of any molecule is the sum of terms allowing for bond stretching, bond angle bending, bond twisting, van der Waals interactions and electrostatics. Many properties of a biomolecules can be simulated with such an empirical energy function.

M.Levitt, Nat. Struct. Biol. 8 (2001), p. 392-393

tisdag 18 december 12

How Many Lennard-Jones Parameters for a Protein?

- * Two parameters per interaction
- * One atom type per element (C,H,N,O,S) : 10 with combination rules, 40 without
- With four atom types per element: 40 with combination rules,
 760 without

The Physical Model

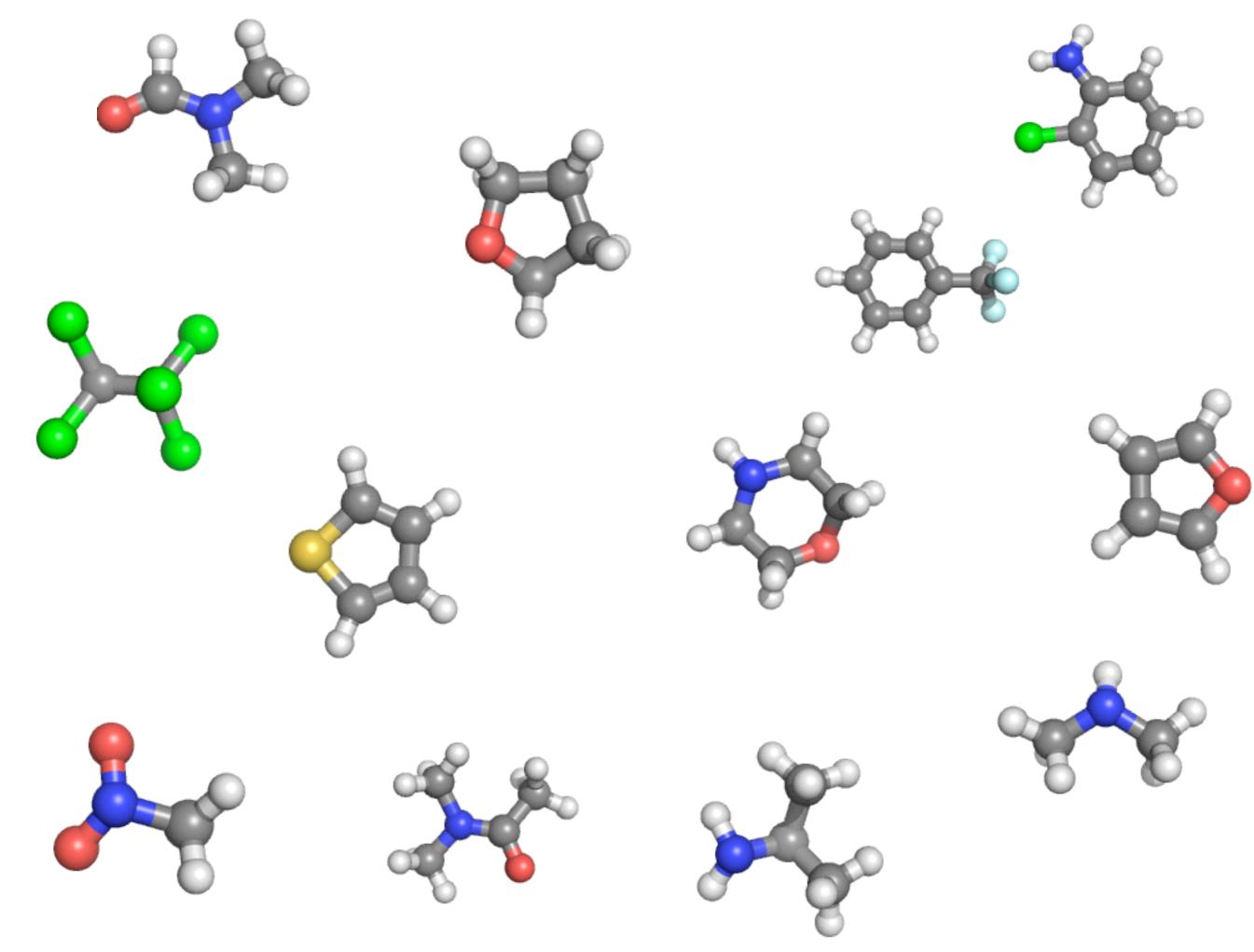
* What determines the quality?
* How can we test it?

Our Gr8t Software

facebook 🔉 💷 🛞	Sök Q	David van der Spoel 🛛 Hitta vänner 🔷 Startsida 📄
	GROMACS Programvara · Redigera information	🖋 Redigera sidan
	logg GROMACS · Dela: Inlägg Foto Länk Skriv något Skriv något Skriv något Image: Skriv något Skriv något Skrival Ima	Alla (senaste) Administratörer (2) [?] Visa alla Administratörer (2) [?] Visa alla Image: Second Se
 Iogg Dolda inlägg Information Vänners aktivitet Statistik Statistik Foton REDIGERA Om verksamheten Redigera GROMACS is a software package for simulations of molecular dynamics. 481 	Gilla · Kommentera · den 8 februari kl. 19:56 Thanos Tequila	Du och GROMACS
	Hi gromacs users, I have some trouble trying to complie gromacs on a GPU. Is the step by step, guide to help me complete this process? :):) thanks Gilla · Kommentera · den 4 februari kl. 18:09	Sponsrade Skapa en annons Se Abduction ikväll!
	Neshat Haq Hi gromacs users , Can anyone tell, what are the considerations to be kept in mir going for a metalloprotein simulation, like protein containing Mn2+ ions. Or is there any tutorial describing the steps, in your knowledg Gilla · Kommentera · den 31 januari kl. 11:00	Fe3+ and BLU-RAY Nyqvist.

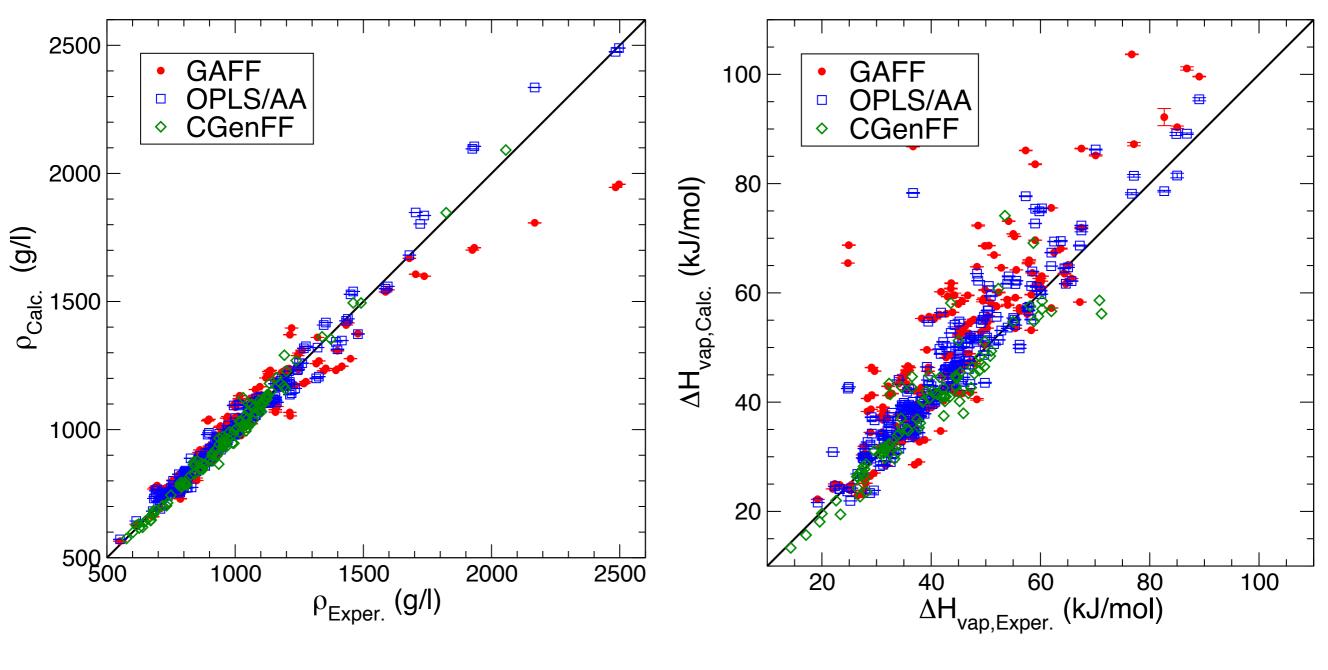
Upplev de 5 roligaste aktiviteterna i Stockholm.

gillar detta


Donal Murphy

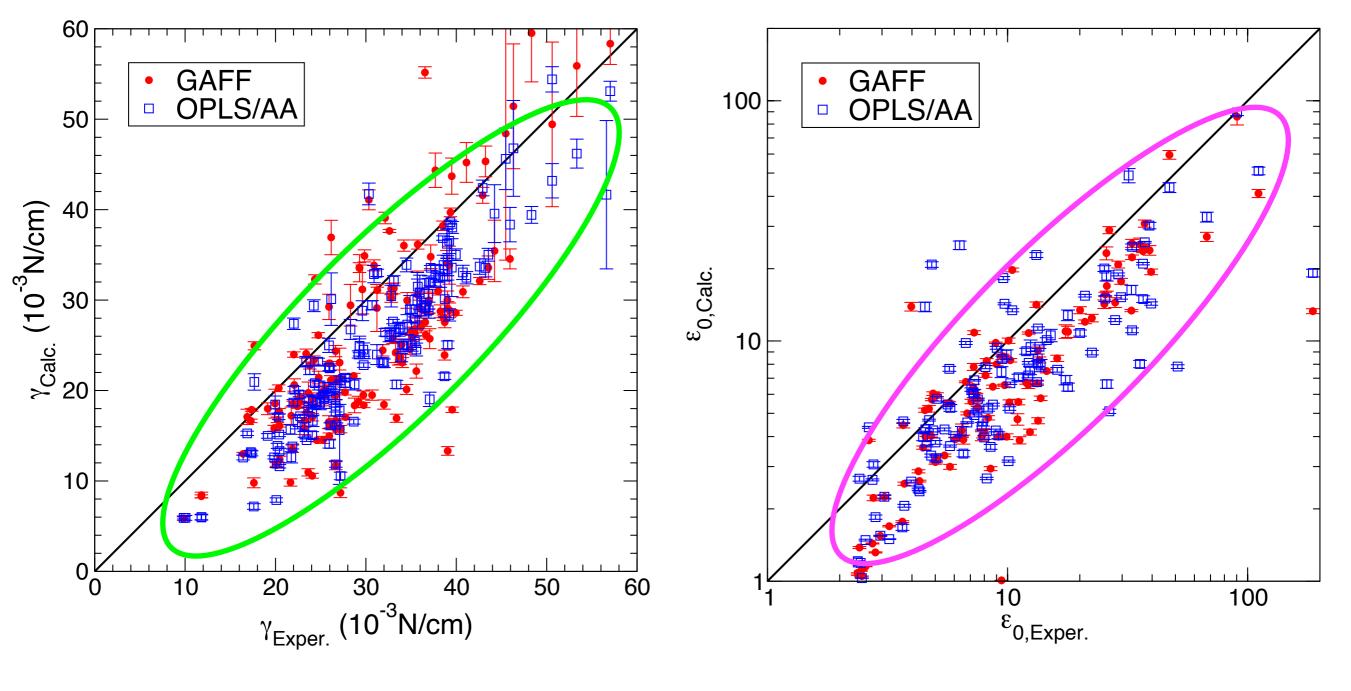
If you're using CPUs in your work and want to share exciting new

http://www.gromacs.org


Liquid FF Benchmark

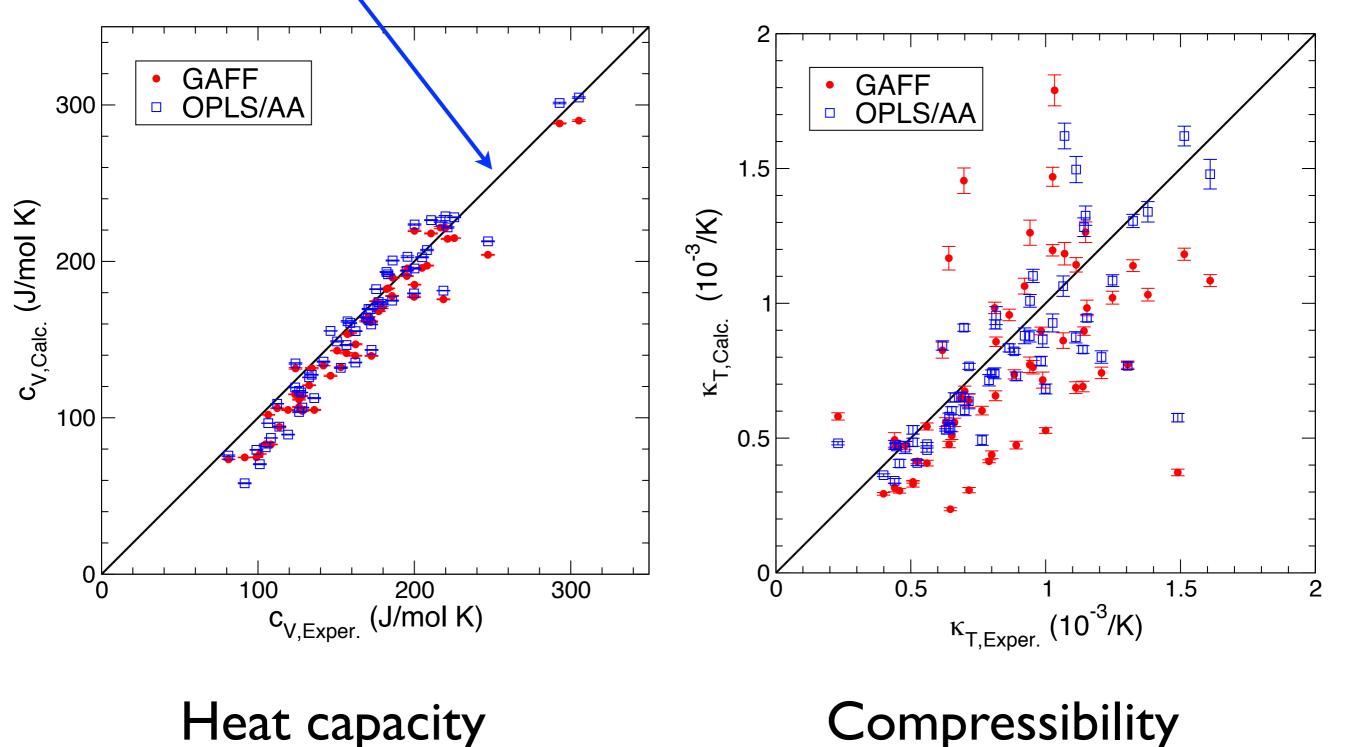
- Test available force field for how good they reproduce properties for ~ 150 organic liquids
- 1000 molecules/box 10 ns production sims
- OPLS/AA, GAFF + CGenFF from literature

tisdag 18 december 12


Simple props

Density

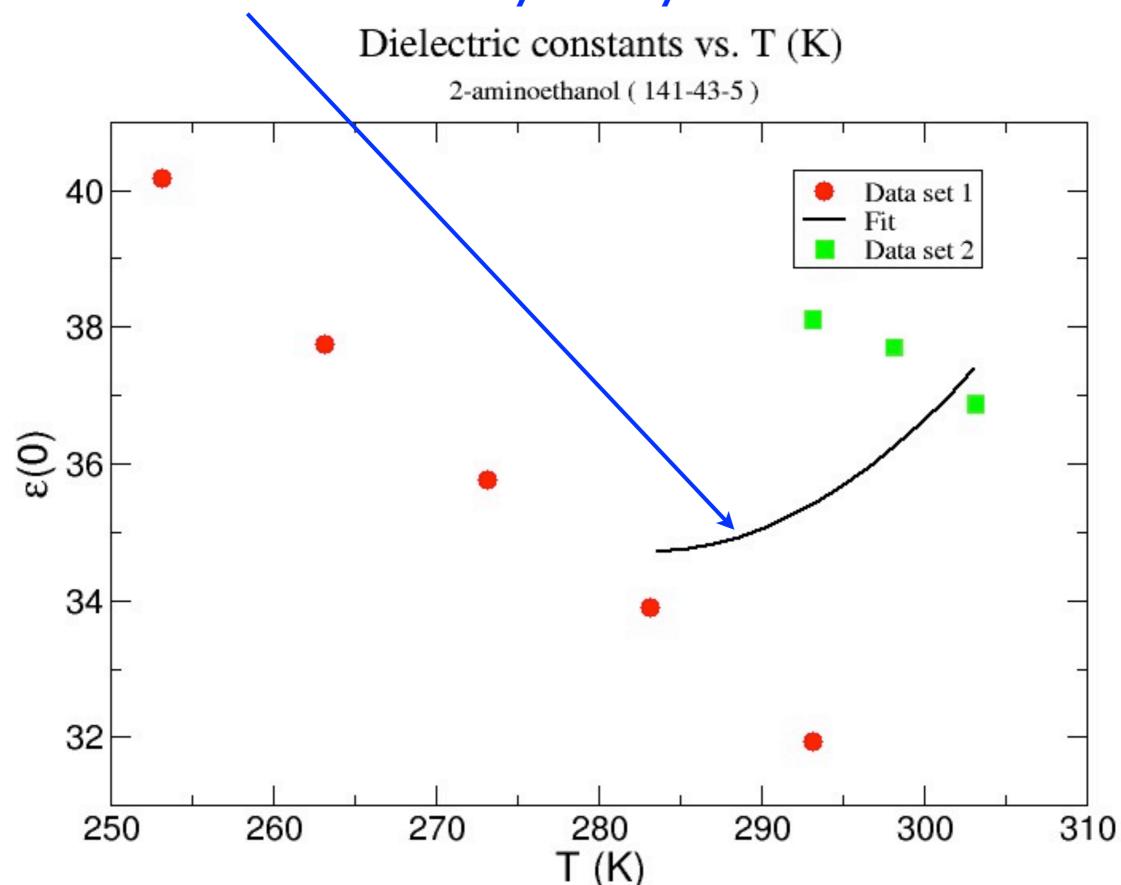
Enthalpy of Vaporization


Not so simple props Due to cut-off of Van der Waals forces? Polarization?

Surface Tension

Dielectric Constant

2 Phase Thermodynamics method! Complex props



tisdag 18 december 12

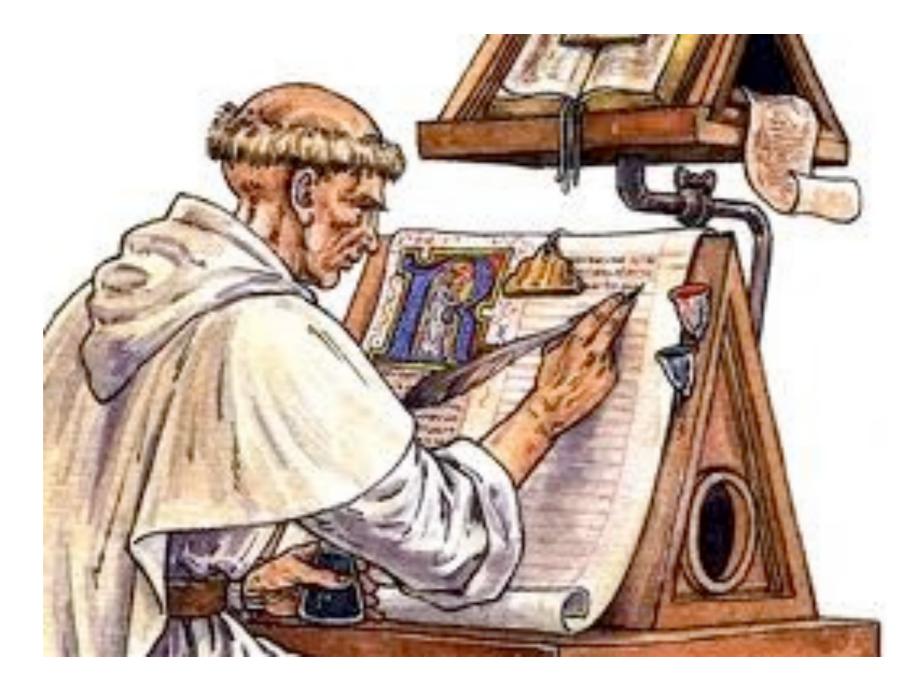
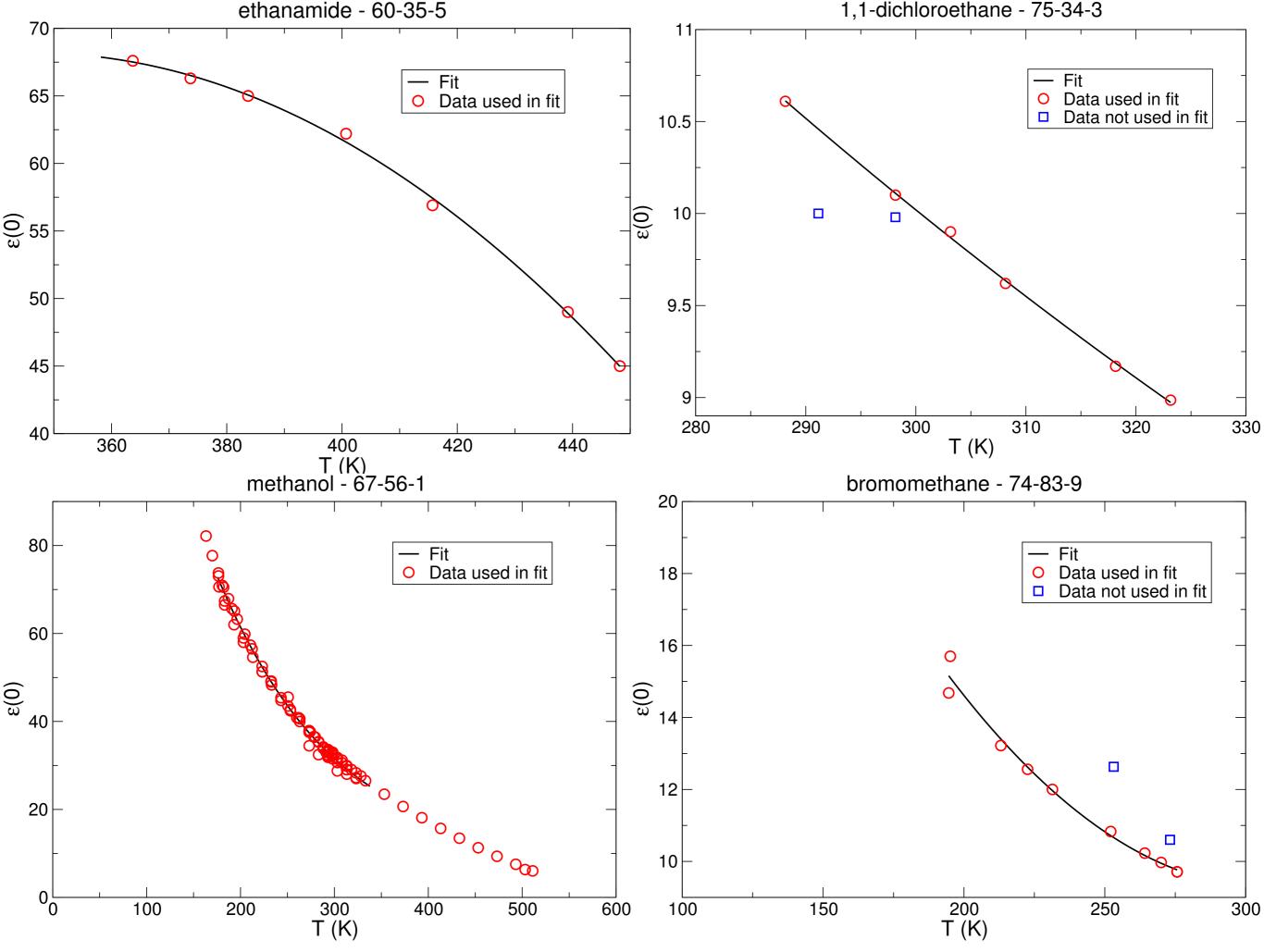

Yihzak Marcus: The Properties of Solvents

Table 3.1 Thermophysical properties of solvents (temperature dependent properties at 25°C, unless otherwise noted)


	Name	M	Tm	ТЪ	Te	d	V	$\alpha_{\rm P}$	t	κ_1	i Anna anna anna anna anna anna anna anna	P	dHv	δ	Cp	2
0	vacuum	0.00				0.0000 j	0.0								0	.00 j
10	tetramethylsilane	88.23	174.1 [1]	299.8 [1]	450.4 [2]	0.6464 [1]	136.5	1.84	[2]	2.884	[gg]	9.56E+01 [1]	24.20 [1]	12.6	204.1	$\{I\}$
20	n-pentane	72.15	143.4 [1]	309.2 [1]	496.7 [1]	0.6214 [1]	116.1	1.58	[1]	2,180	[1]	6.87E+01 [1]	26.41 [1]	14.4	167.1	$\{1\}$
30	2-methylbutane	72.15	113.3 [1]	301.0 [1]	460.4 [1]	0.6140 [1]	117.5	1.66	[1]	2.450	[1]	9.17E+01 [1]	24.84 [1]	13.8	165.4	[1]
40	n-hexane	86.18	177.8 [1]	341.9[1]	507.7 [1]	0.6549 [1]	131.6	1.39	[1]	1.706	[1]	2.02E+01 [1]	31.48 [1]	15.0	195.4	[1]
50	c-hexane	84.16	279.9 [1]	353.9 [1]	553.6 [1]	0.7742 [1]	108.7	1.23	[1]	1.140	[1]	1.30E+01 [1]	32.89 [1]	16.8	156.0	$\{1\}$
60	n-heptane	100.2	182.6 [1]	371.6 [1]	540.7 [1]	0.6793 [1]	147.5	1.27	[1]	1.442	[1]	6.10E+00 [1]	36.58 [1]	15.2	224.9	$\{1\}$
-70	n-octane	114.2	216.4 [1]	398.8 [1]	568.8 [1]	0.6987 [1]	163.5	1.17	[1]	1.282	[1]	1.87E+00 [1]	41.49 [1]	15.5	254.1	$\{1\}$
80	2,2,4-trimethyl pentane	114.2	165.8 [1]	372.4 [1]	543.9 [1]	0.7122 [1]	160.4	1.20	[1]			6.50E+00 [1]	35.15 [1]	14.7	238.5	[1]
- 90	n-decane	142.2	243.5 [1]	447.3 [1]	617.6 [1]	0.7263 [1]	195.9	1.05	[1]	1.093	[1]	1.80E-01 [1]	51.38 [1]	15.8	314.5	$\{1\}$
100	n-dodecane	170.3	263.6 [1]	489.5 [1]	658.3 [1]	0.7541 [1]	228.6	0.98	[1]	0.989	[1]	1.50E-01 [1]	61.29 [1]	16.0	375.9	[1]
110	n-hexadecane	226.4	291.0 [3]	560.0 [3]	720.6 [2]	0.7700 [1]	294.1	0.88	[1]	0.867	[3]	2.00E-04 [1]	81.09 [1]	16.3	501.4	[2]
120	benzene	78.12	278.7 [1]	353.2[1]	562.2 [1]	0.8690 [1]	89.9	1.23	[1]	0.962	[1]	1.27E+01 [1]	33.85 [1]	18.8	135.7	[1]
130	toluene	92.14	178.2 [1]	383.8 [1]	591.8 [1]	0.8619 [1]	106.9	1.07	[1]	0.922	[1]	3.75E+00 [1]	37.99 [1]	18.8	157.2	[1]
140	o-xylene	106.1	248.0[1]	417.6[1]	630.3 [1]	0.8760 [1]	121.2	0.95	[1]	0.811	[1]	8.80E-01 [1]	43.43 [1]	18.0	188.0	[1]
150	m-xylene	106.1	225.3 [1]	412.3 [1]	617.1 [1]	0.8604 [1]	123.4	0.99	[1]	0.862	[1]	1.10E+00 [1]	42.66 [1]	18.0	183.4	[1]
160	p-xylene	106.1	286.4 [1]	411.5 [1]	616.2 [1]	0.8569 [1]	123.9	1.00	[1]	0.859	[1]	1.17E+00 [1]	42.38 [1]	18.1	181.6	[1]
170	ethylbenzene	106.1	178.2 [1]	409.3 [1]	617.2 [1]	0.8625 [1]	123.1	1.02	[1]	0.865	[1]	1.30E+00 [1]	42.25 [1]	18.0	185.5	[1]
180	cumene	120.1	177.1 [1]	425.6 [1]	631.1 [1]	0.8573 [1]	140.2	0.98	[1]	0.893	[1]	6.10E-01 [1]	45.14 [1]	17.6	198.9	[1]
190	mesitylene	120.1	228.4 [1]	437.9 [1]	637.3 [1]	0.8610[1]	139.6	0.94	[1]	0.699	[1]	3.30E-01 [1]	7.48 [1]	18.1	209.1	[1]
200	styrene	104.1	242.5 [1]	418.3 [1]	636.9 [1]	0.9010[1]	115.6	0.97	[1]			8.40E-01 [1]	43.93 [1]	18.9	182.5	$\{1\}$
210	tetralin	132.2	237.4 [1]	480.8 [1]	754.0 [1]	0.9657[1]	136.9	0.72	[1]			5.30E-02 [1]	55.23 [1]	19.4	217.4	[1]
220	cis-decalin	138.2	230.1 [1]	468.9 [1]	702.2 [1]	0.8931 [1]	154.8	0.85	[1]			1.00E-01 [1]	51.34 [1]	17.8	232.0	[1]
230	water	18.02	273.2 [1]	373.2 [1]	647.1 [1]	0.9974 [1]	18.1	0.26	[1]	0.457	[1]	3.17E+00 [1]	43.91 [1]	47.9	75.30	[1]
240	methanol	32.04	175.5 [1]	337.7 [1]	512.6 [1]	0.7872 [1]	40.7	1.19	[1]	1.248	[1]	1.69E+01 [1]	37.43 [1]	29.3	81.47	[1]
250	ethanol	46.07	158.7 [1]	351.4 [1]	513.9 [1]	0.7848 [1]	58.7	1.09	[1]	1.153	[1]	7.89E+00 [1]	42.32 [1]	26.0	112.3	[1]
260	n-propanol	60.10	147.0 [1]	370.3 [1]	537.3 [1]	0.8003 [1]	75.1	1.01	[1]	1.025	[1]	2.73E+00 [1]	47.45 [1]	24.4	143.8	[1]
	i-propanol	60.10	185.2 [1]	355.4 [1]	508.3 [1]	0.7815 [1]	76.9	1.08	[1]	1.332	[1]	6.03E+00 [1]	45.39 [1]	23.7	154.6	[1]
280	n-butanol	74.12	184.5 [1]	390.8 [1]	563.0 [1]	0.8057 [1]	92.0	0.93	[1]	0.941	[1]	8.20E-01 [1]	52.35 [1]	23.3	177.0	<i>[</i> 1]
290	i-butanol	74.12	165.0 [1]	381.0[1]	547.8 [1]	0.7978 [1]	92.9	0.98	[1]	1.026	[1]	1.38E+00 [1]	50.82 [1]	22.9	181.0	[1]
300	2-butanol	74.12	158.5 [1]	372.7 [1]	536.0 [1]	0.8030 [1]	92.3	1.06	[1]	0.983	[7]	2.43E+00 [1]	49.72 [1]	22.6	213.8	[1]
310	t-butanol	74,12	298.8 [1]	355.5 [1]	506.2 [1]	0.7810[1]	94.9	1.26	[1]	0.989	[7]	5.60E+00 [1]	46.69 [1]	21.6	220.3	[1]
320	n-pentanol	88.15	195.0 [1]	411.1 [1]	588.2 [1]	0.8124 [1]	108.5	0.89	[1]	0.884	[1]	3.15E-01 [1]	57.02 [1]	22.4	208,9	[1]

Handbook of Chemistry & Physics

Science in the 21st century...

tisdag 18 december 12

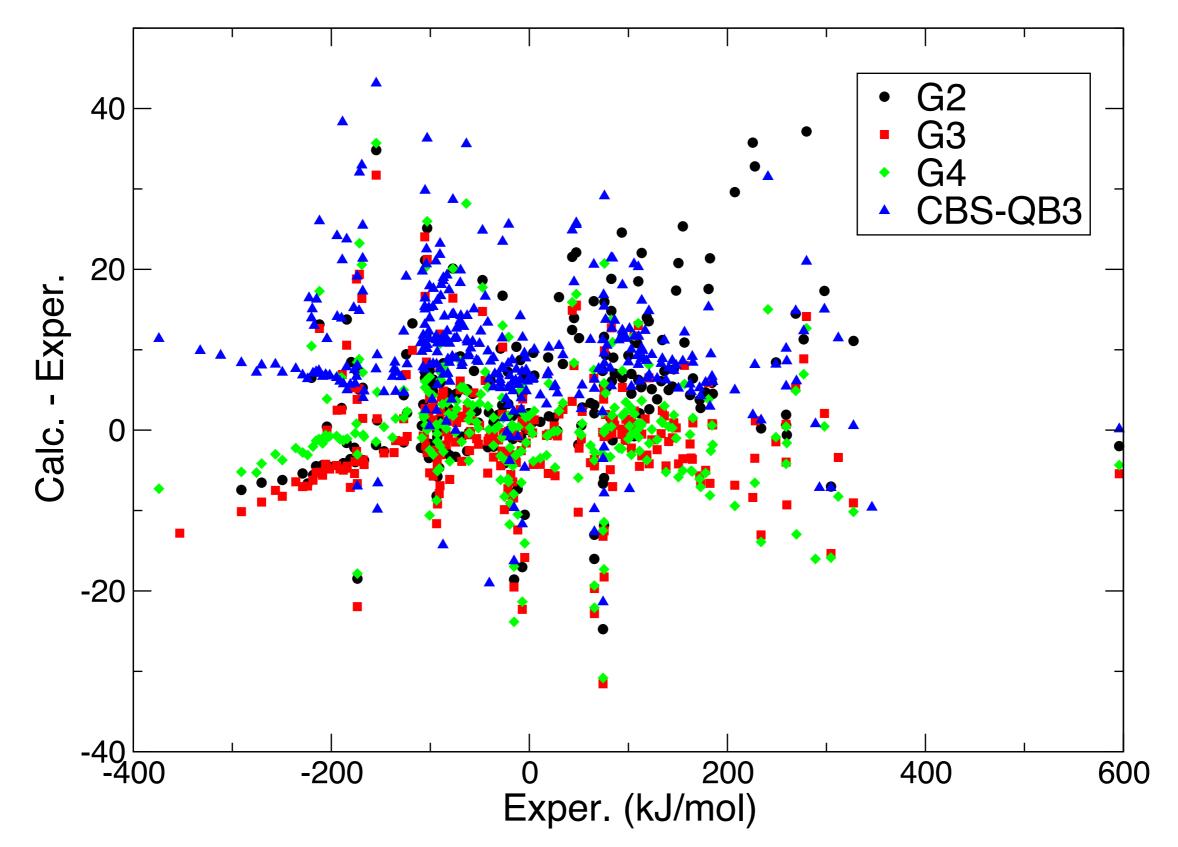
Force field	N	a	b	RMSD	% Dev.	R^2				
ρ (g/l)										
GAFF	235	0.96	58.6	82.9	4	97%				
OPLS/AA	235	0.98	21.3	40.3	2	99%				
CGenFF ³⁶	111	1.03	-36.0	26.0	2	99%				
OPLS/AA ⁷⁰	9	1.01	-24.0	45.3	4	96%				
ΔH_{vap} (kJ/mol)										
GAFF	231	1.07	0.8	10.6	17	83%				
OPLS/AA	231	0.96	3.4	6.5	11	89%				
CGenFF ³⁶	95	0.94	2.4	4.7	7	84%				
$\gamma (10^{-3} \text{N/m})$										
GAFF	155	0.75	0.9	8.6	23	70%				
OPLS/AA	155	0.97	-5.5	7.3	22	89%				
			$\epsilon(0)$							
GAFF	170	0.21	0.6	23.4	52	48%				
OPLS/AA	183	0.16	0.7	22.7	57	56%				
		α_{P}	(10^{-3})	K)						
GAFF	221	0.90	0.3	0.3	24	67%				
OPLS/AA	221	0.91	0.3	0.3	21	75%				
OPLS/AA ⁷⁰	9	0.53	0.8	0.7	42	39%				
$\kappa_{\rm T} (1/{\rm GPa})$										
GAFF	60	0.56	0.1	0.3	31	64%				
OPLS/AA	60	0.61	0.2	0.3	21	76%				
OPLS/AA ⁷⁰	8	0.93	0.0	1.1	59	84%				

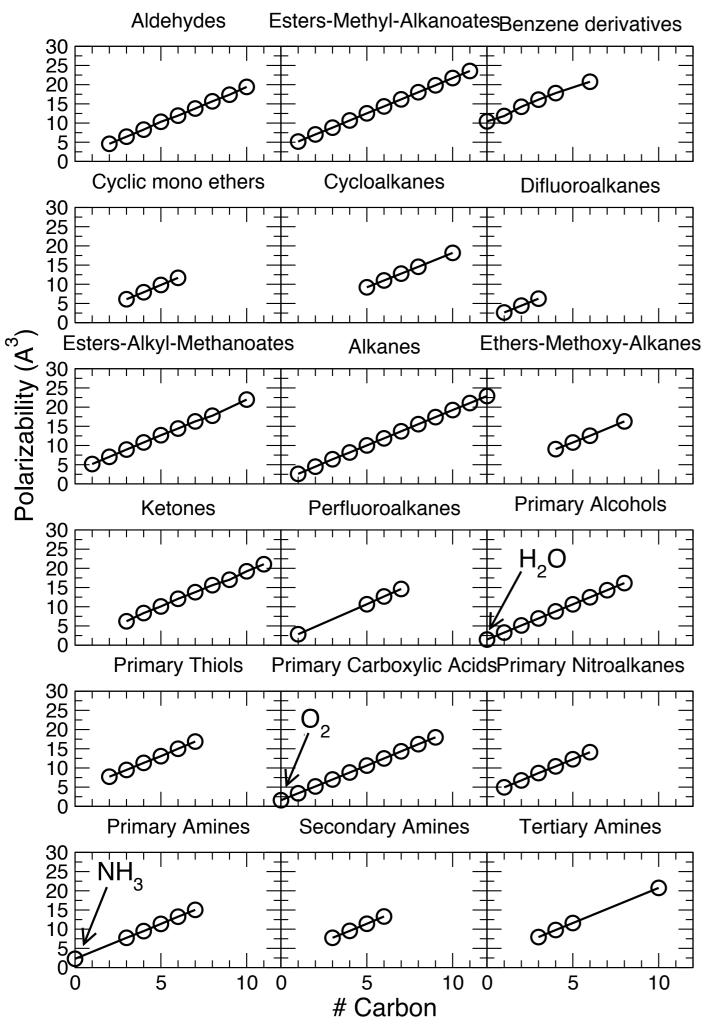
Statistics

 Quantitative evaluation per property.

Benchmark is Foundation for Future FF

- > 100,000 experimental data points gathered in a SQL database
- Allows rational FF derivation ... at last


http://virtualchemistry.org/


Can Quantum Chemistry Help?

- Compute properties for which there is no experimental data
- Electric properties (multipole moments) polarizabilities are reproduced well

• Energies ?

Enthalpy of Formation

Fear not

Nature is linear...

tisdag 18 december 12

Summary Force Field

- Intermolecular energies within ~ 5-7 kJ/mol in force fields - for supported atom types
- A lot of work going on in force field tuning and development
- Many properties can be computed based on long classical simulations

References

- Carl Caleman, Paul van Maaren, Minyan Hong, Jochen Hub, Luciano Costa, David van der Spoel, J. Chem. Theor. Comput. 8 (2012) 61-74
- David van der Spoel, Paul van Maaren, Carl Caleman, Bioinformatics (2012) doi: 10.1093/ bioinformatics/bts020
- Oliver Lange, David van der Spoel, Bert L. de Groot - Biophysical Journal 99 (2010) 647-655

The Two Phase Thermodynamics Method

David van der Spoel, Uppsala University

tisdag 18 december 12

What's the problem?

- For ideal gases theories exist from which one can derive thermodynamics properties
- For solids another kind of theory exists
- For liquids there is no such thing

Ist Ansatz

 Treat Liquid just like a Solid - system of harmonic oscillators

II. CLASSICAL THERMODYNAMICS FROM MOLECULAR DYNAMICS

The standard equations¹ linking the canonical partition function Q and the various thermodynamic variables are

$$E = k_B T^2 \frac{\partial \ln Q}{\partial T} , \qquad (2.1)$$

$$C_v = \frac{\partial E}{\partial T} , \qquad (2.2)$$

$$A = -k_B T \ln Q , \qquad (2.3)$$

$$S = k_B T \frac{\partial \ln Q}{\partial T} + k_B \ln Q , \qquad (2.4)$$

in which E is the energy, C_v the constant volume heat capacity, A the Helmholtz free energy, S the entropy, k_B Boltzmann's constant, and T the temperature.

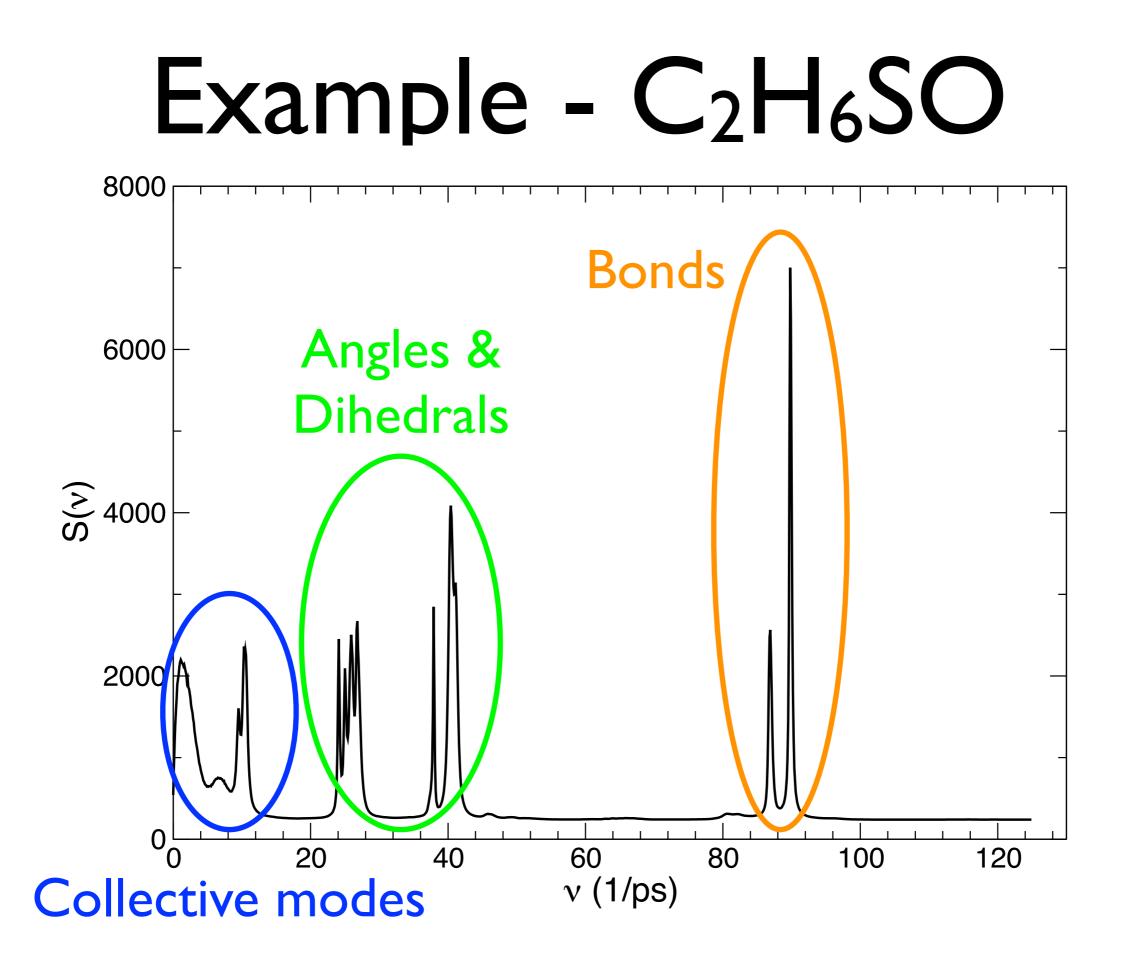
Berens et al. JCP 79 (1983) pp2375

In the harmonic limit, a normal mode analysis allows us to view the system as a set of 3N harmonic oscillators. The total canonical partition function Q for the system can then be expressed in terms of the partition functions q_i for the individual modes as

$$Q = \prod_{j=1}^{3N} q_j \qquad (3.18)$$

or

$$\ln Q = \sum_{j=1}^{3N} \ln q_j . \tag{3.19}$$


If the normal frequencies are continuously distributed we may take the integral

$$\ln Q = \int_{0}^{\infty} d\nu S(\nu) \ln q(\nu) , \qquad (3.20)$$
where $S(\nu)$ is the density of normal modes with frequency ν .

Berens et al. JCP 79 (1983) pp2375

The trick

- S(v) can be derived from the velocity autocorrelation function
- Assume the frequencies in the classical simulation are correct (and the amplitudes)
- Reweigh the S(v) to get a corresponding
 Quantum S(v)

Now we will try to comprehend the solid component of the density of states, $DoS_{solid}(\nu)$. Here, each mode is considered to be harmonic and we use the partition function for a quantum harmonic oscillator as given by McQuarrie [8]:

$$q_{\rm HO}^q(\nu) = \frac{e^{-\beta h\nu/2}}{1 - e^{-\beta h\nu}}$$
 (S9)

where h is Planck's constant, $\beta = 1/k_{\rm B}T$. Since the canonical partion function Q of a system is given by the product of the components (Equations 3.18-3.20, reference [6]):

$$Q = \prod_{i=1}^{N} q_i \tag{S10}$$

and therefore

$$\ln Q = \sum_{i=1}^{N} \ln q_i \tag{S11}$$

Caleman et al. JCTC 8 (2012) 61-74

Final Result I

$$E^{\mathbf{Q}} = V_0 + k_B T \int_0^{\infty} d\nu S(\nu) W_E^{\mathbf{Q}}(\nu) ; \quad W_E^{\mathbf{Q}}(\nu) = \left(\frac{u}{2} + \frac{u}{e^u - 1}\right),$$
(3.40)

$$C_{v}^{Q} = k_{B} \int_{0}^{\infty} dv S(v) W_{C_{v}}^{Q}(v) ; \quad W_{C_{v}}^{Q}(v) = \left(\frac{u^{2} e^{u}}{(1 - e^{u})^{2}}\right) ,$$
(3.41)

$$A^{Q} = V_{0} + k_{B} T \int_{0}^{\infty} d\nu S(\nu) W^{Q}_{A}(\nu) ; \quad W^{Q}_{A}(\nu) = \left(\ln \frac{1 - e^{-u}}{e^{-u/2}} \right) ,$$
(3.42)

$$S^{Q} = k_{B} \int_{0}^{\infty} d\nu S(\nu) W_{S}^{Q}(\nu) ; \quad W_{S}^{Q}(\nu) = \left(\frac{u}{e^{u} - 1} - \ln(1 - e^{-u})\right).$$
(3.43)

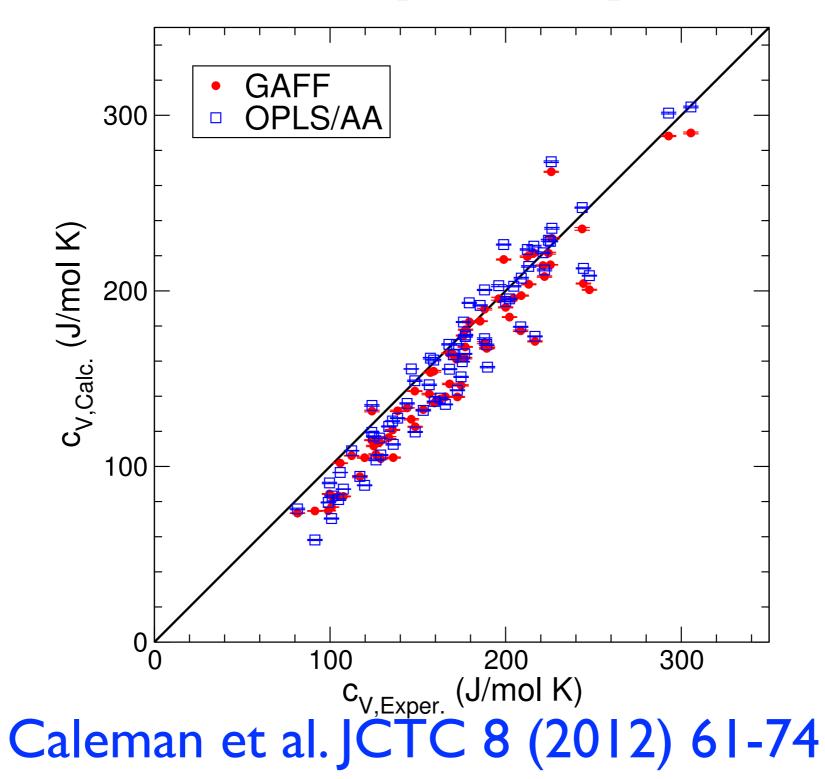
Berens et al. JCP 79 (1983) pp2375

2nd Ansatz

- Treat a liquid as a combination of solid and ideal gas - 2 phase thermodynamics
- Gas can be treated as a hard-sphere gas for which analytical thermodynamical results exist

Lin et al. JCP 2003, JPCB 2012, Pascal PCCP 2011

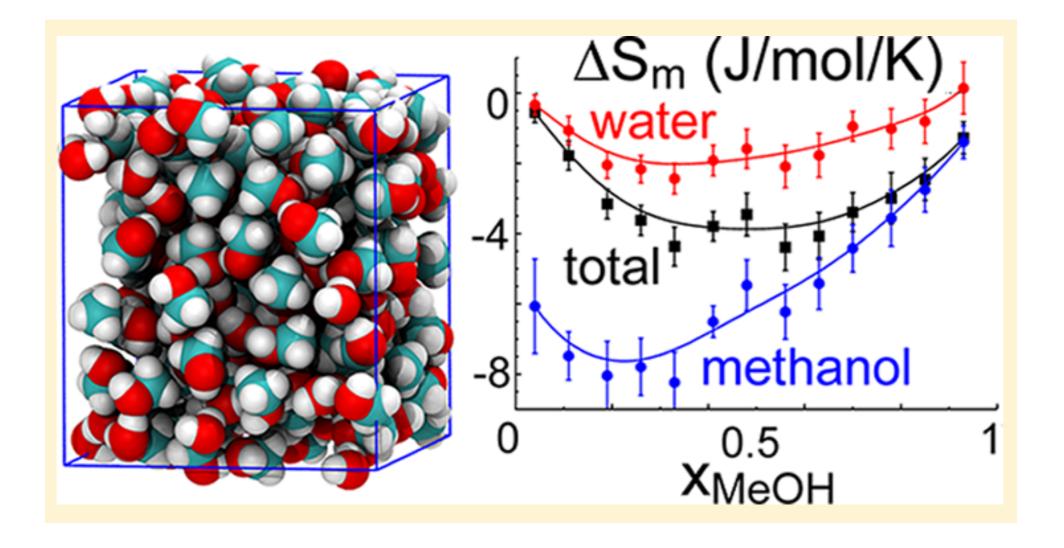
Final Result 2


- Determine "fluidicity" how fluid is the simulation between 0 and 1
- Modified weighting function same as Berens for the solid part + another for the gas part

Lin et al. JCP 2003, JPCB 2012, Pascal PCCP 2011

How does it work?

- Do MD simulation with flexible bonds, 20-100 ps (time step 0.2 fs)
- Save velocities every 4-5 fs
- Compute mass-weighted velocity ACF and compute properties S, E, A, Cv by weighting the S(v) and integrating!


Heat Capacity Cv

Hydrophobic Segregation, Phase Transitions and the Anomalous Thermodynamics of Water/Methanol Mixtures

Tod A. Pascal and William A Goddard, III

J. Phys. Chem. B http://dx.doi.org/10.1021/jp309693d

Summary 2PT

- Promising new method
- Lowest frequencies contribute most may also work with constraints
- Very recently also for mixtures
- More development and testing needed

References

- Carl Caleman, Paul J. van Maaren, Minyan Hong, Jochen S. Hub, Luciano T. Costa, David van der Spoel: Force Field Benchmark of Organic Liquids: Density, Enthalpy of Vaporization, Heat Capacities, Surface Tension, Compressibility, Expansion Coefficient and Dielectric Constant J. Chem. Theor. Comput. 8 pp. 61-74 (2012)
- Lin, S.T.; Blanco, M.; Goddard, III, W.A. J. Chem. Phys. 2003, 119, 11792–11805.
- Lin, S.-T.; Maiti, P. K.; Goddard, III, W.A. J. Phys. Chem. B 2010, 114, 8191–8198.
- Pascal, T.A.; Lin, S.-T.; Goddard, III, W.A. Phys. Chem. Chem. Phys. 2011, 13, 169–181.
- Huang, S.-N.; Pascal, T.A.; Goddard, III, W.A.; Maiti, P.K.; Lin, S.-T. J. Chem. Theory Comput. 2011, 7, 1893–1901.
- Berens, P. H.; Mackay, D. H. J.; White, G. M.; Wilson, K. R. J. Chem. Phys. 1983, 79, 2375–2389