LECTURE #3: THE ROLE OF SYMMETRY IN HIGH-RESOLUTION Molecula SPECTROSCOPY Spectroscopy Attila G. Császár

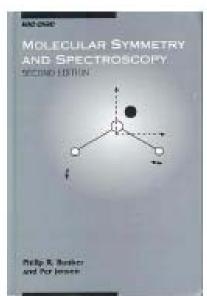
Laboratory of Molecular Structure and Dynamics **Department of Physical Chemistry** Institute of Chemistry **Eötvös University** SPRESTINENSIS DE **Budapest**, Hungary csaszar@chem.elte.hu http://theop11.chem.elte.hu Winter School in Theoretical Chemistry Helsinki, Finland, December 17-20, 2012

Introduction

- CNP and CNPI groups
- Molecular symmetry (MS) groups
- Spin statistical weights
- Summary

Some of the relevant literature on molecular symmetry of rovibronic states

- P. R. Bunker and P. Jensen: *Molecular Symmetry* and Spectroscopy, 2nd edition, NRC Research Press, Ottawa, 1998
- H. C. Longuet-Higgins: Mol. Phys. 6, 445 (1963)
- J. T. Hougen, J. Chem. Phys. 39, 358 (1963)
- M. Quack: Fundamental symmetries and symmetry violation from high-resolution spectroscopy, *Handbook of High-Resolution Spectroscopy*, Wiley: 2011



Fundamental symmetries of molecular physics

- (1) translation in space (G_T) uniform space
- (2) translation in time
- (3) rotation in space (K(spatial)) isotropic space
- (4) inversion of all particle coordinates at the origin (space inversion, parity operation *P*)
- (5) ,,time reversal" or the reversal of all particle momenta including spin but not the coordinates (operation *T* for time reversal, antiunitary)
- (6) permutation of indices of identical particles ($S_n^{(e)}$ and G^{CNP})
- (7) replacement of all particles by their corresponding antiparticles (operation *C* for charge conjugation, *e.g.*, electrons vs. positrons)

Fundamental symmetries of molecular physics

exact symmetry —> exact conservation law

- (1) —> momentum conservation
- (2) —> energy conservation
- (3) —> angular momentum conservation
- (4) —> parity conservation

P, *C*, and *T*, as well as *CP* are all individually violated, only *CPT* remains an exact symmetry in the current ,,standard model"

Symmetry and molecules with internal motion (rotation and vibration)

- concept: the symmetry operations considered leave the molecular Hamiltonian unchanged (invariant) and not the geometrical symmetry of the equilibrium structure (like point group symmetries)
- such **symmetry groups** have elements of permutations of identical nuclei with or without inversion
- symmetry operations considered: **feasible permutationinversion** operations
- symmetry groups have properties similar to those of the well known point groups: irreducible representations, classes, characters, etc.

Permutation (symmetric) groups

- *permutation*: change the order of an ordered string of numbers, a list (*e.g.*, 1, 2, and 3 can be arranged in 3! = 6 ways: <u>123</u>, <u>132</u>, <u>213</u>, <u>231</u>, <u>312</u>, <u>321</u>)
- *permutational operator*: operates on a list and performs a replacement [(13)213 = 231]
- *transposition*: (12), (13), etc. $[(12) \equiv (21)]$
- *cycles*: (123), (132), etc.
- (123)(132) = E (*identity operation*)

$$(ab...z) = \begin{pmatrix} a & b & c & \cdots & y & z \\ b & c & d & \cdots & z & a \end{pmatrix}$$

Permutation (symmetric) groups

Successive application of permutations:

$$(23)(132) = \begin{pmatrix} 123 \\ 132 \end{pmatrix} \begin{pmatrix} 123 \\ 312 \end{pmatrix} = \begin{pmatrix} 312 \\ 213 \end{pmatrix} \begin{pmatrix} 123 \\ 312 \end{pmatrix} = \begin{pmatrix} 123 \\ 312 \\ 213 \end{pmatrix} = \begin{pmatrix} 123 \\ 312 \\ 213 \end{pmatrix} = (12)$$

breaking down a permutation into products of transpositions is not unique but the number of transpositions (odd/even) is (relation to Bose-Einstein and Fermi-Dirac statistics)

transpositions are the *inverses* of themselves

defined everything to form a group: *permutation group* (*symmetric group*)

Table 1-1

The multiplication table of the S_3 group^a

	E	(12)	(23)	(13)	(123)	(132)
E:	E	(12)	(23)	(13)	(123)	(132)
(12):	(12)	E	(123)	(132)	(23)	(13)
(23):	(23)	(132)	E	(123)	(13)	(12)
(13):	(13)	(123)	(132)	E	(12)	(23)
(123):	(123)	(13)	(12)	(23)	(132)	E
(132):	(132)	(23)	(13)	(12)	E	(123)

^aEach entry is the product of first applying the permutation at the top of the column and then applying the permutation at the left end of the row.

source: P.R. Bunker, P. Jensen

CNP group

Application to molecules: the *complete nuclear permutation* (CNP) group of a molecule containing *l* identical nuclei of one set, *m* of another, etc., is the following direct product:

$$oldsymbol{G}^{\mathrm{CNP}} = oldsymbol{S}_l \otimes oldsymbol{S}_m \otimes oldsymbol{S}_n \otimes \cdots$$

Example: CNP group of CHO-COOH.

$$\boldsymbol{G}^{\text{CNP}} = \boldsymbol{S}_{3}^{(\text{O})} \otimes \boldsymbol{S}_{2}^{(\text{H})} \otimes \boldsymbol{S}_{2}^{(\text{C})}$$

= { *E*, (12), (23), (13), (123), (132) } \otimes { *E*, (45) } \otimes { *E*, (67) }

The complete list contains $3! \times 2! \times 2! = 24$ elements.

12 distinct forms of ethylene

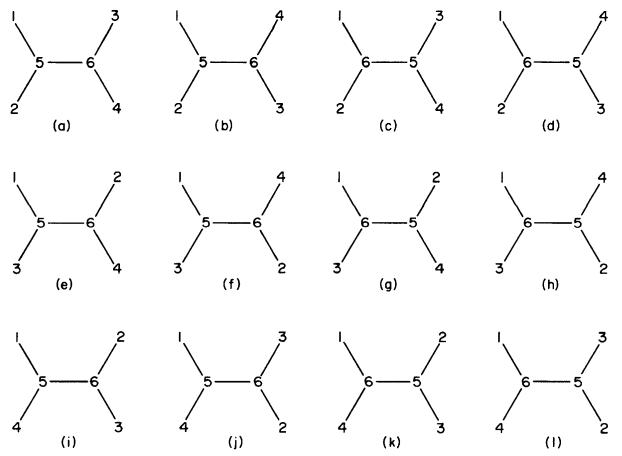
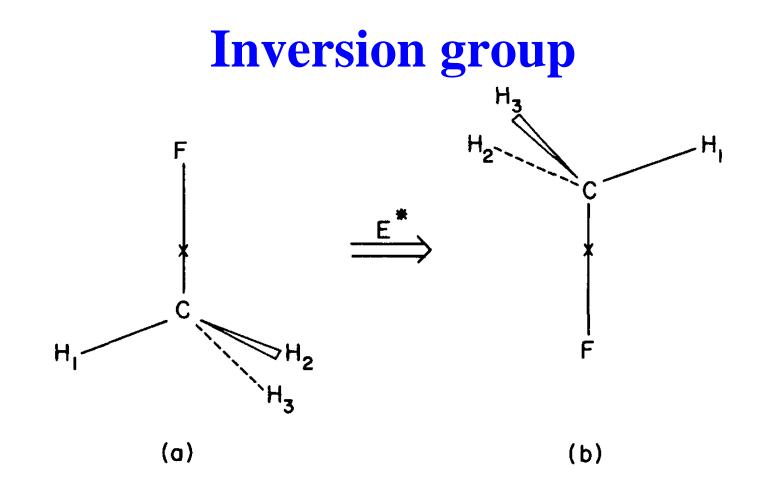


Fig. 1-3. The 12 distinct forms of an ethylene molecule in which the protons are labeled 1 to 4 and the carbon nuclei 5 to 6. Distinct forms cannot be interconverted by simply rigidly rotating them in space.

version: distinct nuclear labeled form, subgroup of CNP group $\{E, (12)(34), (13)(24)(56), (14)(23)(56)\}$ source: P.R. Bunker, P. Jensen



The effect of E^* on CH₃F without drawing the space fixed axes. *inversion group*: contains only two elements, E and E^* ; E^* and P commute with each other $\mathcal{E} = \{E, E^*\}$ source: P.R. Bunker, P. Jensen

CNPI group: contains all possible permutations of identical nuclei with and without inversion; thus, it contains twice as many elements as the CNP group

CNPI group of ethylene, C_2H_4 : $\boldsymbol{S}_4^{(H)} \otimes \boldsymbol{S}_2^{(C)} \otimes \boldsymbol{\mathcal{E}}$

contains 96 elements

source: P.R. Bunker, P. Jensen

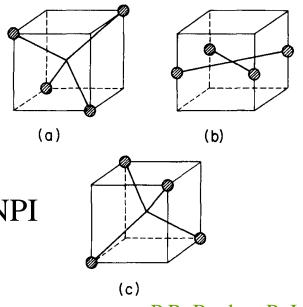
Molecular symmetry (MS) group

MS group: a convenient subgroup of the CNPI group; the group corresponding to one version of the molecule

structural degeneracy: presence of more than one version of the equilibrium structure of the molecule (one cannot simply interconvert the numbered forms by simple rotations, only through a potential barrier

methane: two versions (deform through planar form) ethylene: 12 versions

contains no *unfeasible elements* of CNPI defined for particular experiments



source: P.R. Bunker, P. Jensen

Molecular symmetry (MS) group

MS group of CH_3F (no interconversion of clockwise and anticlockwise forms: $C_{3v}(M)$

MS group of ethylene (no distinctions between the 12 versions: $D_{2h}(M)$

MS group of ammonia (with inversion tunneling): same as CNPI group, $D_{3h}(M)$

Nuclear spin statistics

Symmetry of the complete internal wavefunction Φ_{int} is restricted

Complete internal wavefunction can have + or – parity according to the effect of E^* on it: Φ_{int} transforms as one of two nondegenerate irreducible representations of the CNPI group, usually written as Γ^+ (+ parity) and Γ^- (– parity)

A rovibronic state of $\Gamma_{\rm rve}$ symmetry can be combined with a nuclear spin state $\Gamma_{\rm ns}$ if the product of the two symmetries is allowed for $\Phi_{\rm int}$

The number of nuclear spin states of a given symmetry may differ for each Γ_{rve} symmetry: origin of nuclear spin statistics

Nuclear spin statistics

Example: $H_2^{16}O$ with CNPI group $C_{2v}(M)$

$C_{2v}(M)$:	$m{E}$ 1	(12) 1	E* 1	$(12)^*$ 1	
<i>C</i> _{2v} :		С _{2b}		σ_{bc}	
Equiv. rot.:	<i>R</i> ⁰	R _b [#]	R _c *	R _a ^π	
$A_{1}:$	1	l	1	1	: $T_b, \alpha_{aa}, \alpha_{bb}, \alpha_{cc}$
A_{2} :	1	L	-1	-1	e) - ae)
$\boldsymbol{B_1}$:	1	 [-1	1	$: T_{\mathbf{c}}, \hat{J}_{\mathbf{a}}, lpha_{\mathbf{b}\mathbf{c}}$
B ₂ :	1	<u> </u>	1	-1	: $T_{oldsymbol{a}}$, $\hat{J}_{oldsymbol{c}}$, $lpha_{oldsymbol{a}oldsymbol{b}}$

(12): odd permutation of fermions (Pauli exclusion principle); changes sign of Φ_{int} : (12) $\Phi(H_2O) = -\Phi(H_2O)$ E^* : $\Gamma^+ = B_2$ and $\Gamma^- = B_1$

Nuclear spin statistics

Example: $D_2^{16}O$ with CNPI group $C_{2v}(M)$

$C_{2v}(M)$:	E1	(12) 1	$(12)^*$ 1	
C _{2v} : Equiv. rot.:		C_{2b} R_b^{π}	σ_{bc} $R_a^{-\pi}$	
A_2 :	1	L L - L - L	 $ \begin{array}{c} 1 \\ -1 \\ 1 \\ -1 \end{array} $	$: T_b, \alpha_{aa}, \alpha_{bb}, \alpha_{cc}$ $: \hat{J}_b, \alpha_{ac}, \Gamma^*$ $: T_c, \hat{J}_a, \alpha_{bc}$ $: T_a, \hat{J}_c, \alpha_{ab}$

(12): odd permutation of bosons; does not change sign of Φ_{int} E^* : $\Gamma^+ = A_1$ and $\Gamma^- = A_2$

Nuclear spin wavefunctions of H₂O

nucleus α having spin I_{α} : total no. of nuclear spin functions H has the spin functions: $\alpha = |\frac{1}{2}, \frac{1}{2}\rangle$, $\beta = |\frac{1}{2}, -\frac{1}{2}\rangle$

¹⁶O has the spin function: $\delta = |0,0\rangle$

possible combinations: $\alpha \alpha \delta$, $\alpha \beta \delta$, $\beta \alpha \delta$, $\beta \beta \delta$

symmetrization of $\alpha \alpha$ and $\beta \beta$ spin functions: $\Gamma_{ns} = 3 A_1 \oplus B_2$ spin functions are invariant to E^* : positive parity

H_2 ¹⁶ O						
Γrve	Γ_{ns}	Γ_{tot}	gns			
A_1	B_2	B_2	1			
A_2	B_2	B_1	1			
B_1	$3A_1$	B_1	3			
B_2	3A1	B_2	3			

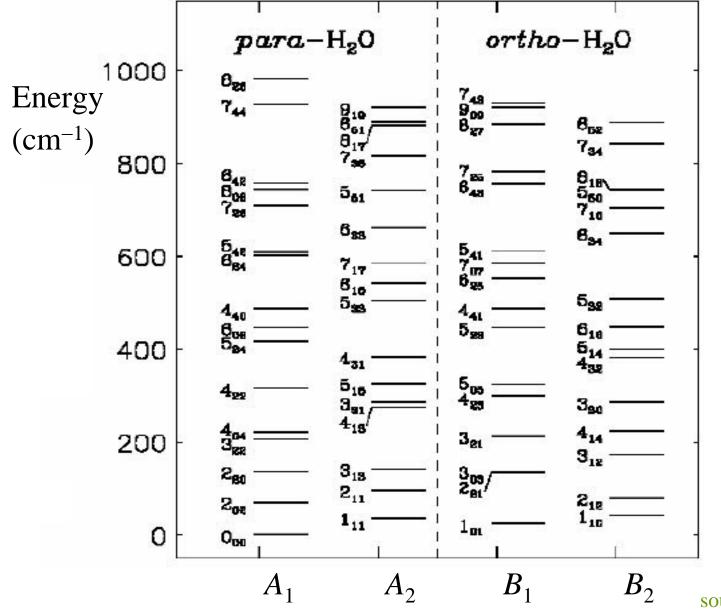
 $para-H_2^{16}O$

ortho-H₂¹⁶O (higher weight)

Nuclear spin wavefunctions of D₂O

	\mathbb{D}_2^{16}	°O	
Γινε	$\Gamma_{\mathrm{ns},}$	Γ_{tot}	$g_{\mathtt{ns}}$
A_1	$6A_1$	A_1	6
A_2	$6A_1$	A_2	6
Bi	3 <i>B</i> 2	A_2	3
B_2	3 <i>B</i> 2	A_{1}	3

Pure rotational energy levels of H₂¹⁶O



source: P. Jensen

Nuclear spin wavefunctions of ¹⁴NH₃

nucleus α having spin I_{α} : total of nuclear spin functions

spin functions are invariant to E^* : positive parity

Exan	nple:	¹⁴ NH ₃	with	MS g	group <i>L</i>	$\mathcal{P}_{3h}(\mathbf{M})$)
					(123)*	(23)*	
$D_{3h}(M)$:	1	2	3	1	2	3	
D _{3h} :	E	$2C_3$	$3C_2$	$\sigma_{ m h}$	$2S_3$	$3\sigma_{\mathbf{v}}$	
Equiv. rot.:	R^0	$R_z^{2\pi/3}$	R_0^{π}	R_z^{π}	$R_z^{-\pi/3}$	$R^{\pi}_{\pi/2}$	
A ₁ ':	1	1	1	1	1	1	: $\alpha_{zz}, \alpha_{xx} + \alpha_{yy}$
A_{1}'' :	1	1	1	- 1	-1	-1	$ \begin{array}{l} \alpha_{zz}, \alpha_{xx} + \alpha_{yy} \\ \Gamma^* \\ \hat{J}_z \\ T_z \end{array} $
A_2' :	1	1	-1	1	1	1	$\therefore \hat{J}_{z}$
A_{2}'' :	1	1	-1	-1	-1	1	T_z
E^{\prime} :	2	-1	0	2	-1	0	$: (T_x, T_y), (\alpha_{xx} - \alpha_{yy}, \alpha_{xy})$
$E^{\prime\prime}$:	2		0	-2	1		$: (\hat{J}_x, \hat{J}_y), (\alpha_{xz}, \alpha_{yz})$

Nuclear spin wavefunctions of ¹⁴NH₃

$$(m_I = 3/2): \quad \alpha \alpha \alpha = \Phi_{ns}^{(1)},$$

$$(m_I = 1/2): \quad \alpha \alpha \beta = \Phi_{ns}^{(2)}, \quad \alpha \beta \alpha = \Phi_{ns}^{(3)}, \quad \beta \alpha \alpha = \Phi_{ns}^{(4)},$$

$$(m_I = -1/2): \quad \alpha \beta \beta = \Phi_{ns}^{(5)}, \quad \beta \alpha \beta = \Phi_{ns}^{(6)}, \quad \beta \beta \alpha = \Phi_{ns}^{(7)},$$

$$(m_I = -3/2): \quad \beta \beta \beta = \Phi_{ns}^{(8)},$$

¹⁴N nucleus three spin functions, altogether 24:

 $\Gamma_{\rm nspin}^{\rm tot} = 12A_1' \oplus 6E'$

Spin	statis	tical	weig	shts
_			C	7

(23): odd permutation of fermions; changes sign of Φ_{int}

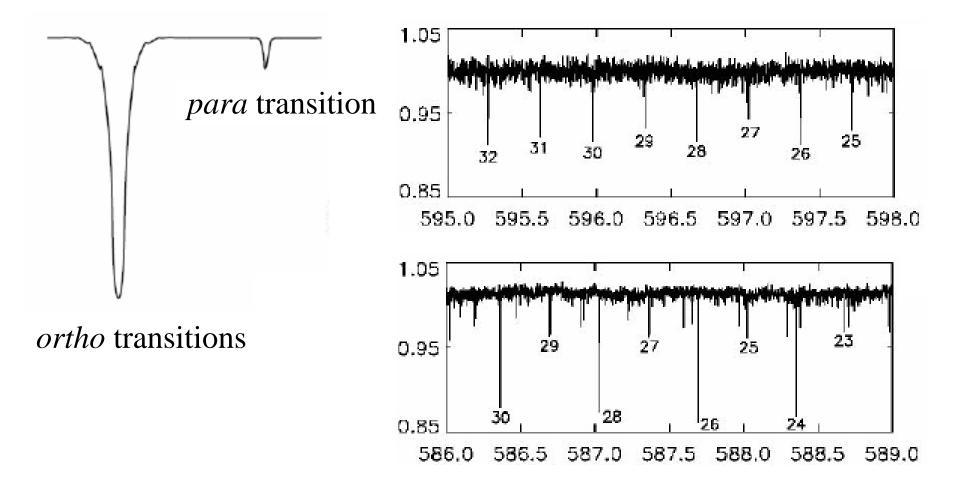
 E^* : $\Gamma^+ = A'_2$ and $\Gamma^- = A''_2$ is symmetry of Φ_{int}

Statistical weights of rovibronic states^a of NH₃

Γ_{rve}	Statistical weight	Γ_{rve}	Statistical weight
$\begin{array}{c} A_1 ' \\ A_2 ' \\ E' \end{array}$	0 12 6	$\begin{array}{c} A_1 ^{\prime\prime} \\ A_2 ^{\prime\prime} \\ E^{\prime\prime} \end{array}$	0 12 6

 a Inversion states are included.

Effect of spin statistical weights on observed spectra: intensity alterations



Ortho-para interaction?

The molecular Hamiltonian may contain the so far neglected interaction terms between angular momenta, leading to hyperfine interactions which can couple ortho and para levels

$$\begin{bmatrix} H_{\rm oo} & H_{\rm op} \\ H_{\rm po} & H_{\rm pp} \end{bmatrix}$$

$$H_{qq} = E_{\rm rve,q} + \langle \Phi_q | \hat{H}_{\rm hfs} | \Phi_q \rangle$$

$$H_{\rm po} = H_{\rm op} = \langle \Phi_{\rm p} | \hat{H}_{\rm hfs} | \Phi_{\rm o} \rangle$$

Research into symmetry breaking

- Due to weak interaction forces in nuclei *E** is not a universal symmetry operation, *P* violation was already observed in atoms, its detection is under way in molecules: parity violation studies, energy difference in enantiomers
- Is permutation symmetry universal? Can one observe the missing transitions?
- Etc.