LECTURE #2 TRIATOMIC MOLECULES: TAILOR-MADE APPROACHES Spectroscopy Attila G. Császár Laboratory of Molecular Structure and Dynamics **Department of Physical Chemistry Institute of Chemistry** Eötvös University SPATSTINENSIS DE Budapest, Hungary csaszar@chem.elte.hu http://theop11.chem.elte.hu

Winter School in Theoretical Chemistry Helsinki, Finland, December 17-20, 2012

Introduction

- The D³OPI and D²FOPI approaches
- Spectroscopic and structural applications and implications
- Summary and outlook

The variational approach Provides a complete theoretical treatment with no/minimal *a priori* **assumptions and no/minimal** *a posteriori* **corrections**

- Treats molecular vibrations and rotations at the same time (6-D problem for triatomics)
- Interprets experimental results in terms of potential energy surface(s), PES, and dipole moment surface (DMS)
- Only assumes rigorous quantum numbers:

J, *p*, symmetry (*e.g.*, ortho/para)

- Results in spectra if DMS is available
- Works irrespective of perturbations of energy levels

Source: J. Tennyson

Choices to be made during the design of a variational nuclear motion algorithm

- coordinates (vibrational and rotational)
- derivation of the analytic form of the **kinetic energy operator** corresponding to the chosen set of coordinates and the chosen **embedding**
- determination of potential energy surface (**PES**)
- selection of **basis** functions
- computation of **matrix elements** of the Hamiltonian
- "diagonalization" of the Hamiltonian

(Lecturer: Janne Pesonen)

Tailor-made approach: prederived, analytic, case-dependent *T*, unique code for each molecule The simplest grid-based procedure to solve the (triatomic) rovibrational problem variationally: The D³OPI and D²FOPI algorithms

Discrete Variable Representation of the Hamiltonian

Energy operator in orthogonal (**O**) coordinate system

Direct-product (P) basis

Diagonalization with an iterative (I) technique (*e.g.*, Lánczos)

G. Czakó, T. Furtenbacher, A. G. Császár, and V. Szalay, *Mol. Phys. (Nicholas C. Handy Special Issue)* 102, 2411 (2004).
T. Szidarovszky, A. G. Császár, and G. Czakó, *PCCP* 12, 8373 (2010).

Coordinates

Jacobi (scattering) coordinates (1842)

simple internal coordinates

Radau coordinates (1868)

Radau coordinates: F = ABC centre of mass PD x PD = CD x FD

Coordinates (Sutcliffe and Tennyson)

Vibrational kinetic energy operator $\hat{K} = \hat{K}_1 + \hat{K}_2$ $\hat{K}_{1} = -\frac{\hbar^{2}}{2\mu_{1}}\frac{\partial^{2}}{\partial R_{1}^{2}} - \frac{\hbar^{2}}{2\mu_{2}}\frac{\partial^{2}}{\partial R_{2}^{2}} - \left(\frac{\hbar^{2}}{2\mu_{1}R_{1}^{2}} + \frac{\hbar^{2}}{2\mu_{2}R_{2}^{2}}\right)\left(\frac{\partial^{2}}{\partial \Theta^{2}} + \operatorname{ctg}\Theta\frac{\partial}{\partial \Theta}\right)$ $\hat{K}_{2} = \frac{\hbar^{2}}{\mu} \left[-\cos\Theta \frac{\partial^{2}}{\partial R \partial R} + \frac{\cos\Theta}{R R} \left(\frac{\partial^{2}}{\partial \Theta^{2}} + \operatorname{ctg}\Theta \frac{\partial}{\partial \Theta} \right) + \sin\Theta \left(\frac{1}{R} \frac{\partial^{2}}{\partial R \partial \Theta} + \frac{1}{R} \frac{\partial^{2}}{\partial R \partial \Theta} + \frac{1}{R R} \frac{\partial^{2}}{\partial \Theta} \right) \right]$ $\frac{1}{1} = \frac{g_2^2}{1} + \frac{1}{1} + \frac{(1-g_2)^2}{1}$ $\mu_{\rm n} m_{\rm c} m_{\rm p}$ $\frac{1}{\mu_2} = \frac{1}{m_c} + \frac{g_1^2}{m_B} + \frac{(1-g_1)^2}{m_A}$ $\frac{1}{m} = -\frac{g_2}{m} - \frac{g_1}{m} + \frac{(1-g_1)(1-g_2)}{m}$ μ_{12} $m_{\rm c}$ $m_{\rm p}$

 $dV = \sin \Theta dR_1 dR_2 d\Theta$ (volume element)

Rovibrational kinetic energy operator in orthogonal coordinates

$$\hat{H} = -\frac{1}{2\mu_{1}} \frac{\partial^{2}}{\partial R_{1}^{2}} - \frac{1}{2\mu_{2}} \frac{\partial^{2}}{\partial R_{2}^{2}} - \left(\frac{1}{2\mu_{1}R_{1}^{2}} + \frac{1}{2\mu_{2}R_{2}^{2}}\right) \left(\frac{\partial^{2}}{\partial \Theta^{2}} + \operatorname{ctg}(\Theta) \frac{\partial}{\partial \Theta} - \frac{\hat{j}_{z}^{2}}{\sin^{2}\Theta}\right) \\ + \frac{1}{2\mu_{1}R_{1}^{2}} \left(J^{2} - 2J_{z}j_{z} - J_{+}j_{-} - J_{-}j_{+}\right) + \hat{V}(R_{1}, R_{2}, \Theta)$$

 $dV = \sin \Theta \sin \xi \ dR_1 dR_2 d\Theta d\varphi d\chi d\xi$

The Sutcliffe-Tennyson Hamiltonian

$$\hat{H} = \hat{K}_V^{(1)} + \hat{K}_V^{(2)} + \hat{K}_{VR}^{(1)} + \hat{K}_{VR}^{(2)} + V(r_1, r_2, heta)$$

where

$$\begin{split} \hat{K}_{V}^{(1)} &= \delta_{jj'} \delta_{kk'} \left[-\frac{\hbar^2}{2\mu_1} \frac{\partial^2}{\partial r_1^2} - \frac{\hbar^2}{2\mu_2} \frac{\partial^2}{\partial r_2^2} + \frac{\hbar^2}{2} j(j+1) \left(\frac{1}{\mu_1 r_1^2} + \frac{1}{\mu_2 r_2^2} \right) \right] \\ \hat{K}_{V}^{(2)} &= -\frac{\hbar^2}{\mu_{12}} \delta_{j'j+1} \delta_{kk'} d_{jk} \left(\frac{\partial}{\partial r_1} - \frac{j+1}{r_1} \right) \left(\frac{\partial}{\partial r_2} - \frac{j+1}{r_2} \right) \\ &- \frac{\hbar^2}{\mu_{12}} \delta_{j'j-1} \delta_{kk'} d_{j-1k} \left(\frac{\partial}{\partial r_1} + \frac{j}{r_1} \right) \left(\frac{\partial}{\partial r_2} + \frac{j}{r_2} \right) \\ \hat{K}_{VR}^{(1)} &= \delta_{jj'} \delta_{kk'} \frac{\hbar^2}{2\mu_1 r_1^2} \left(J(J+1) - 2k^2 \right) - \delta_{jj'} \delta_{k'k\pm 1} \frac{\hbar^2}{2\mu_1 r_1^2} C_{jk}^{\pm} C_{jk}^{\pm} \\ \hat{K}_{VR}^{(2)} &= \delta_{j'j+1} \delta_{k'k+1} \frac{\hbar^2}{2\mu_{12}} C_{jk}^{\pm} \frac{a_{j\pm k}}{r_1} \left(\frac{j+1}{r_2} - \frac{\partial}{\partial r_2} \right) \end{split}$$

$$+ \,\delta_{j'j-1}\delta_{k'k-1}rac{\hbar^2}{2\mu_{12}}C^\pm_{Jk}rac{b_{j\pm k}}{r_1}\left(rac{j}{r_2}+rac{\partial}{\partial r_2}
ight)$$

Angular functions: $\Theta_{jk} D^J_{Mk}(\alpha, \beta, \gamma)$ Angular factors: $a_{jk}, b_{jk}, C^{\pm}_{Jk}, d_{jk}$

$$\frac{1}{\mu_1} = \frac{g_2^2}{m_1} + \frac{1}{m_2} + \frac{(1-g_2)^2}{m_3}$$
$$\frac{1}{\mu_2} = \frac{1}{m_1} + \frac{g_1^2}{m_2} + \frac{(1-g_1)^2}{m_3}$$
$$\frac{1}{\mu_{12}} = \frac{(1-g_1)(1-g_2)}{m_3} - \frac{g_2}{m_1} - \frac{g_1}{m_2}$$
$$= 0 \text{ for orthogonal coordinates}$$

Effective Hamiltonian after integration over angular and rotational coordinates. Case where z is along r_1

Vibrational KE

Vibrational KE Non-orthogonal coordinates only

Rotational & Coriolis terms

Rotational & Coriolis terms Non-orthogonal coordinates only

Reduced masses (g_1,g_2) defined by coordinates

Source: J. Tennyson

Challenge

How would the kinetic energy operator look like if the rotational and vibrational masses were different?

Non-adiabatic effects in the ST Hamiltonian

$$\hat{H} = \hat{K}_V^{\text{eff}} + \hat{K}_{VR}^{\text{eff}} + V^{\text{eff}}$$

where

$$\hat{K}_V = \hat{K}_V^{\text{eff}} - \delta_{kk'} rac{k^2}{2\sin^2 heta} \left(rac{1}{\mu_1 r_1^2} + rac{1}{\mu_2 r_2^2}
ight)$$

$$\hat{K}_{VR} = \hat{K}_{VR}^{\text{eff}} + \delta_{kk'} \frac{k^2}{2\sin^2\theta} \left(\frac{1}{\mu_1 r_1^2} + \frac{1}{\mu_2 r_2^2}\right)$$

if $\mu^{\rm vib} = \mu^{\rm rot}$

$$\hat{K}_V + \hat{K}_{VR} = \hat{K}_V^{\text{eff}} + \hat{K}_{VR}^{\text{eff}}$$

 $\text{if}\; \mu^{\text{vib}} \neq \mu^{\text{rot}}$

$$\hat{K}_V + \hat{K}_{VR} = \hat{K}_V^{\text{eff}} + \hat{K}_{VR}^{\text{eff}} + \hat{K}_{NBO}$$

$$\hat{K}_{NBO} = \delta_{kk'} rac{k^2}{2\sin^2 heta} \left(rac{s_1}{\mu_1 r_1^2} + rac{s_2}{\mu_2 r_2^2}
ight)$$

$$s_{i} = \frac{\mu_{i}^{\text{vib}}}{\mu_{i}^{\text{rot}}} - 1$$
$$V^{\text{cff}}(\underline{R}) = V_{\text{BO}}(\underline{R}) + V_{\text{rel}}(\underline{R}) + \frac{1}{\mu_{S}} \Delta V_{\text{sym}}^{\text{ad}}(\underline{R}) + \frac{1}{\mu_{A}} \Delta V_{\text{asym}}^{\text{ad}}(\underline{R})$$

Source: J. Tennyson

Open challenge

How would the kinetic energy operator look like if the rotational and vibrational masses would depend on the coordinates?

Basis functions

<u>Vibrations</u>

- one-dimensional orthogonal polynomial basis functions
 - Hermite-functions
 - Laguerre-functions and variants
 - Legendre-functions
 - Sinc basis, etc.
- multidimensional basis functions (one possible but not the preferred way to treat singularities)

<u>Rotations</u>

- symmetric top eigenfunctions
- Wang functions

Discrete variable representation (DVR) basis functions

Hermite functions

Hermite-DVR functions

Source: C. Fábri

Hasis iftontions

$$\hat{H} = -\frac{1}{2\mu_{1}} \frac{\partial^{2}}{\partial R_{1}^{2}} - \frac{1}{2\mu_{2}} \frac{\partial^{2}}{\partial R_{2}^{2}} - \left(\frac{1}{2\mu_{1}R_{1}^{2}} + \frac{1}{2\mu_{2}R_{2}^{2}}\right) \left(\frac{\partial^{2}}{\partial \Theta^{2}} + \operatorname{ctg}(\Theta)\frac{\partial}{\partial \Theta}\right) + \hat{V}(R_{1}, R_{2}, \Theta)$$

$$dV = \sin \Theta dR_{1} dR_{2} d\Theta$$
Direct product basis:
$$\frac{P}{(\lambda_{n_{1}} + \lambda_{n_{2}})} \frac{\operatorname{ctg}(R_{2})}{(\lambda_{n_{1}} + \lambda_{n_{2}})} \Phi_{\ell}(\cos \Theta) \Big|_{n_{1}=0, n_{2}=0, \ell=0}^{N_{1}-1, N_{2}-1, L-1}$$
Normalized Legendre-polynomials:
$$Ang_{1} r \text{ singularity}$$
Potential- $\left(\rho \hat{p}_{1}^{2} \text{mized}(\Theta) \hat{Q}_{\Theta}\right) P_{\ell} \operatorname{ctg}(\Theta) = \ell(\ell+1) P_{\ell}(\cos \Theta)$

DVR representation of the Hamiltonian

$$\hat{H} = -\frac{1}{2\mu_{1}} \frac{\partial^{2}}{\partial R_{1}^{2}} - \frac{1}{2\mu_{2}} \frac{\partial^{2}}{\partial R_{2}^{2}} - \left(\frac{1}{2\mu_{1}R_{1}^{2}} + \frac{1}{2\mu_{2}R_{2}^{2}}\right) \left(\frac{\partial^{2}}{\partial \Theta^{2}} + \operatorname{ctg} \Theta \frac{\partial}{\partial \Theta}\right) + \hat{V}(R_{1}, R_{2}, \cos \Theta)$$

$$\int \left(\mathbf{R}_{j}^{-2}\right)_{n_{j}, n_{j}'} = \frac{1}{2\mu_{j}q_{n_{j}}^{2}} \delta_{n_{j}, n_{j}'} \quad \left(\mathbf{K}_{\Theta}\right)_{\ell, \ell'} = \mathbf{T}^{+} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 & 0 \\ 0 & 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & (L-2)(L-1) \end{pmatrix} \mathbf{T} \int \mathbf{K}_{R_{j}} \right)_{n_{j}, n_{j}'} = \left\langle \chi_{n_{j}}(R_{j}) \right| - \frac{1}{2\mu_{j}} \frac{\partial^{2}}{\partial R_{j}^{2}} \left| \chi_{n_{j}'}(R_{j}) \right\rangle \quad \left(\mathbf{V}^{\operatorname{diag}}\right)_{n_{l}n_{2}\ell, n_{l}'n_{2}'\ell'} = V(q_{n_{1}}, q_{n_{2}}, q_{\ell}) \delta_{n_{1}n_{2}\ell, n_{l}'n_{2}'\ell'}$$

$$\mathbf{H}^{\mathrm{DVR}} = \mathbf{K}_{R_1} \otimes \mathbf{I}_{R_2} \otimes \mathbf{I}_{\Theta} + \mathbf{I}_{R_1} \otimes \mathbf{K}_{R_2} \otimes \mathbf{I}_{\Theta} + \mathbf{R}_1^{-2} \otimes \mathbf{I}_{R_2} \otimes \mathbf{K}_{\Theta} + \mathbf{I}_{R_1} \otimes \mathbf{R}_2^{-2} \otimes \mathbf{K}_{\Theta} + \mathbf{V}^{\mathrm{diag}}$$

ED²FOPI

 \mathbf{V}

T. Szidarovszky, A. G. Császár, and G. Czakó, PCCP 12, 8373 (2010).

 $\mathbf{K}_{1}^{N_{1}\times N_{1}}\otimes \mathbf{I}_{2}^{N_{2}\times N_{2}}\otimes \mathbf{I}_{\mathcal{O}}^{L\times L} \quad \mathbf{I}_{1}^{N_{1}\times N_{1}}\otimes \mathbf{K}_{2}^{N_{2}\times N_{2}}\otimes \mathbf{I}_{\mathcal{O}}^{L\times L} \quad \mathbf{R}_{1}^{N_{1}\times N_{1}}\otimes \mathbf{I}_{2}^{N_{2}\times N_{2}}\otimes \mathbf{K}_{\mathcal{O}}^{L\times L} \quad \mathbf{I}_{1}^{N_{1}\times N_{1}}\otimes \mathbf{R}_{2}^{N_{2}\times N_{2}}\otimes \mathbf{K}_{\mathcal{O}}^{L\times L}$

Hamiltonian matrix in case of the D²FOPI algorithm

Grid-based techniques in natural sciences

- **Discrete Ordinate Method** (DOM, atmospheric sciences for 3D radiative transfer, DOTS with time stepping)
- Quadrature Discretization Method (QDM, kinetic theory, Fokker-Planck equation)
- Lagrange mesh (LM, quantum mechanics)
- Fourier grid Hamiltonian (FGH, timedependent quantum mechanics)
- **Discrete Variable Representation** (DVR, molecular spectroscopy) with (optimal) generalized (GDVR) variants

- Spectral convergence of the quadrature discretization method in the solution of the Schrodinger and Fokker-Planck equations: Comparison with sinc methods (J. Chem. Phys., 2006.)
- "Lagrange functions": A family of powerful basis sets for real-space order-N electronic structure calculations (Phys. Rev. Lett., 2004.)
- Semiclassical generalization of the Darboux-Christoffel formula (J. Math. Phys., 2002.)
- The unexplained accuracy of the Lagrange-mesh method (Phys. Rev. E, 2002.)
- Quantum theory of bimolecular chemical reactions (Reports on Progress in Physics, 2000.)
- Integrals of Lagrange functions and sum rules (J. Phys. A-Math. and Theo., 2011.)
- Vortex formation in a rotating two-component Fermi gas (Phys. Rev. A, 2011.)
- Implementation of the time-dependent configuration-interaction singles method for atomic strong-field processes (Phys. Rev. A, 2010.)
- Discrete Variable Representation Implementation of the One-Electron Polarization Model (J Chem. Theo. and Comp., 2010.)
- Grid method for computation of generalized spheroidal wave functions based on discrete variable representation (Phys. Rev. E., 2009.)
- Variational estimates using a discrete variable representation (Phys. Rev. A, 2004.)
- The Bloch wave operator: generalizations and applications: II. The time-dependent case (J. Phys. A-Math and Gen., 2003.)
- Wave packet dynamics on the repulsive potential surface of BaFCH3 excited at 745 nm (Chem. Phys. Lett., 2002.)
- Analysis of the R-matrix method on Lagrange meshes (J. Phys. B-At. Mol. and Opt. Phys., 1998.)
- The influence of surface motion on the direct subsurface absorption of H-2 on Pd(111) (J. Chem. Phys., 1997.)
- Matrix-free application of Hamiltonian operators in Coifman wavelet bases (J. Chem. Phys., 2010.)
- Phase diagram of the rotating two-component Fermi gas including vortices (arXiv:1201.2856, 2012)
- Variational discrete variable representation for excitons on a lattice (Phys. Rev. B, 2011.)
- Photoionization cross sections of hydrogen impurities in spherical quantum dots using the finite-element discrete-variable representation (Phys. Rev. A, 2011.)

Source: V. Szalay

Standard DVR versus FBR

DVR advantages

• Diagonal in the potential (quadrature approximation)

 $< \alpha |V| \beta > = \delta_{\alpha\beta} V(x_{\alpha})$, no need for integration

- Analytic evaluation of kinetic energy matrix elements
- Optimal truncation and diagonalization based on adiabatic separation
- Sparse Hamiltonian matrix with product basis
- Easy property evaluations: *i*th element of the *n*th eigenvector proportional to the value of the *n*th eigenfunction at the *i*th quadrature point

DVR disadvantages

- Not strictly variational (quadrature and truncation error couple, difficult to do small calculations)
- Problems with coupled basis sets (back to optimal (G)FBR)
- Inefficient for non-orthogonal coordinate systems

Transformation between DVR and FBR is quick & simple for standard DVR

Diagonalization of large matrices

1.) Secular equation with metric S

 $\mathbf{A}\mathbf{v}^{K} = \lambda^{K}\mathbf{S}\mathbf{v}^{K}$

2.) Secular equation with metric S = I

$$AU = UD$$
 $A = UDU^T$

- 3.) Jacobi method (1846)
 - $\mathbf{A} = \mathbf{U}^{+} \mathbf{A}_{n \times n}^{(0)} \mathbf{U}$

U: product of a large no. of simple, unitary matrices

$$\mathbf{U} = \lim_{k \to \infty} \mathbf{R}^{(k)} \mathbf{R}^{(k-1)} \mathbf{R}^{(k-2)} \dots \mathbf{R}^{(0)}$$
$$\tau^{2}(\mathbf{A}) = \sum_{p>q} A_{pq}^{2} \quad \text{nondiagonality measure}$$

Diagonalization of large matrices

4.) Givens (1954): tridiagonal form in 0.5(n - 1)(n - 2) rotations

5.) Householder: much improved tridiagonalization

6.) Wilkinson: QL (sometimes called QR) algorithm, applicable after tridiagonalization

7.) non-unit metric: Cholesky decomposition (Gram-Schmidt in disguise), canonical or Löwdin (symmetric) orthogonalization

Iterative Lanczos "diagonalization"

$$\mathbf{B}^{T} \mathbf{A} \mathbf{B} = \begin{pmatrix} d_{1} & t_{1} & . & . & . \\ t_{1} & d_{2} & t_{2} & . & . \\ . & t_{2} & d_{3} & t_{3} & . \\ . & . & t_{3} & d_{4} & . \\ . & . & . & . & . \end{pmatrix} = \mathbf{T} \qquad \mathbf{A} \text{ large, } \mathbf{B} \text{ small}$$

$$\mathbf{A}\mathbf{b}_{i} = t_{i-1}\mathbf{b}_{i-1} + d_{i}\mathbf{b}_{i} + t_{i}\mathbf{b}_{i+1} \qquad \text{start: } \mathbf{x}_{1}$$
$$\mathbf{b}_{i} = \mathbf{x}_{i} / x_{i} \qquad \text{Krylov sequence:}$$
$$\mathbf{\sigma}_{i} = \mathbf{A}\mathbf{b}_{i} \qquad \mathbf{x}_{1}, \mathbf{A}\mathbf{x}_{1}, \mathbf{A}^{2}\mathbf{x}_{1}, \dots$$
$$d_{i} = \mathbf{\sigma}_{i}^{T} \cdot \mathbf{b}_{i} \qquad \text{preconditioning}$$
$$\mathbf{x}_{i+1} = \mathbf{\sigma}_{i} - d_{i}\mathbf{b}_{i} - t_{i-1}\mathbf{b}_{i-1}$$
$$t_{i} = x_{i+1}$$

Question 1:

Can experimental precision be achieved for the first-principles prediction of high-resolution rotational-vibrational spectra of polyatomic molecules?

Disadvantages of empirical fitting Assignments using branches

Source: J. Tennyson

The color of H_3^+ (*PRL* 2012, 108, 023002)

The color of H_3^+ (*PRL* 2012, 108, 023002)

Deviation between experiment and theory for H₃⁺

Deviation between experiment and theory for H₃⁺

Question 2:

Can complete high-resolution rotationalvibrational spectra (all the <u>bound</u> states) of polyatomic molecules be computed *ab initio* in a converged way?

Complete vibrational spectroscopy of H₃⁺

even parity (688)

odd parity (599)

T. Szidarovszky, A. G. Császár, and G. Czakó, PCCP 12, 8373 (2010).

Bound rovibrational states of water under the dissociation limit

Highly excited vibrational states of water

A. G. Császár et al., J. Quant. Spectr. Rad. Transfer 111, 1043 (2010).

Highly excited vibrational states of water

A. G. Császár et al., J. Quant. Spectr. Rad. Transfer 111, 1043 (2010).

Highly excited vibrational states of water

A. G. Császár et al., J. Quant. Spectr. Rad. Transfer 111, 1043 (2010).

Question 3:

How do rotational-vibrational spectra of polyatomic molecules beyond the first dissociation limit look like?

Resonance states are stationary eigenstates of the Hamiltonian which are associated with ...

- complex, discrete eigenvalues of the Hamiltonian of the form: $E = E_0 - i\frac{\Gamma}{2}$ where E_0 is the energy and Γ is related to the lifetime
- wavefuncions that are not in L^2 and which diverge exponentially with respect to the dissociation coordinate(s)
- There are two possibilities to compute Feshbach and shape resonances: CAP and complex scaling

Quasibound states of water beyond the dissociation limit

Quasibound states of water beyond the dissociation limit

Question 4:

How high in energy do the simple rigid-rotor and harmonic-oscillator pictures with their corresponding approximate RRHO quantum numbers work?

Normal Mode Decomposition (NMD) $NMD_{iJ}^{2} = \left\langle \psi_{i} \middle| Q_{J}^{HO} \right\rangle^{2}$

HNCO	4681.3	572.4	637.0	818.1	1144.8	1209.4	1274.0	1318.3	1390.5	1455.1	1636.2	1717.2	1781.8	
"Fundamentals"	Q_0	Q ₅	Q ₆	Q_4	Q_{5+5}	Q_{5+6}	\boldsymbol{Q}_{6+6}	Q ₃	Q_{4+5}	Q_{4+6}	Q_{4+4}	Q ₅₊₅₊₅	Q_{5+5+6}	Sum
4631.0	98	0	0	0	0	0	0	0	0	0	0	0	0	 99
579.5	0	_ 95	0	1	0	0	0	0	0	0	0	0	0	 97
660.2	0	0	_99	0	0	0	0	0	0	0	0	0	0	 99
780.7	0	2	0	_ 90	0	0	0	0	0	0	2	0	0	 96
1146.8	0	0	0	0	80	0	6	5	0	0	0	0	0	 93
1267.1	0	0	0	0	3	0	26	_41	20	0	0	0	0	 94
1275.1	0	0	0	0	0	91	0	0	0	5	0	0	0	 97
1329.3	0	0	0	2	4	0	11	_45	22	0	4	0	0	 92
1358.6	0	0	0	2	7	0	54	5	15	0	7	0	0	 93
1476.6	0	0	0	0	0	7	0	0	0	88	0	0	0	 97
1521.6	0	0	0	2	0	0	2	0	28	0	51	0	0	 91
1712.7	0	0	0	0	0	0	0	0	0	0	0	69	0	 90
1843.6	0	0	0	0	0	0	0	0	0	0	0	0	45	 96
											•••		•••	
Sum	98	99	98	95	98	99	99	94	98	95	92	95	98	

E. Mátyus, C. Fábri, T. Szidarovszky, G. Czakó, W. D. Allen, and A. G. Császár, *J. Chem. Phys.* **2010**, *133*, 034113.

Percentage of clearly identifiable rovibrational states of H₂¹⁶O based on RRD coefficients

Question 5:

Can quantum chemistry predict measurable, *i.e.*, temperature-dependent, rovibrationally averaged molecular properties?

$r_{\rm g}$ structures of water (T = 293 K)

	H ₂ ¹⁶ O		D ₂ ¹⁶ O	
	$r_{\rm g}({ m OH})/{ m \AA}$	r _g (HH)/Å	$r_{\rm g}({ m OD})/{ m \AA}$	$r_{\rm g}({ m DD})/{ m \AA}$
$r_{\rm g}$ calc.	0.97566	1.53812	0.97136	1.53122
(GED)	(0.9763)	(1.567)	(0.9700)	(1.526)
(Spectr.)	(0.9745)	(1.537)	(0.9702)	(1.531)
$r_{\rm a}$ calc.	0.97138	1.52956	0.96783	1.52516
(Adiabatic $r_{\rm e}$	0.95785	1.51472	0.95783	1.51460)
$r_{\rm g} - r_{\rm e}$	0.01781		0.01353	
	(0.0182) ^{cubic}		(0.0131) ^{cubic}	

G. Czakó, E. Mátyus, A. G. Császár, J. Phys. Chem. A 113, 11665 (2009).

Temperature dependence of $r_g(OH)$ of water

G. Czakó, E. Mátyus, A. G. Császár, J. Phys. Chem. A 113, 11665 (2009).

Effective structures of ortho- and para-water

- (a) DOPI-type procedures, using tailor-made kinetic energy operators, are the favored techniques for the solution of the (tri- and tetraatomic) variational rovibrational problem when the goal is to match experiments, compute full rovibrational spectra (including resonances), or estimate rovibrational averages.
- (b) Molecules have quasibound states above the dissociation limit, their computation is feasible via fourth-age quantum chemical techniques.
- (c) Spin statistics play an important for molecular spectroscopy.
- (d) There is still a lot to learn about nonadiabatic behavior of small molecules if full understanding of molecular spectra is desired.
- (e) Variational nuclear motion computations can bridge the gap between equilibrium properties computed via electronic structure computations and temperature-dependent, rovibrationally averaged measured molecular properties.