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http://www.newworldencyclopedia.org/entry/Electromagnetic_spectrum 



Beer-Lambert law 

 

 

 

 

 
 

T : Transmittance   

ℓ  : path length  

ε : molar extinction coefficient  

c : concentration  
 



Beer-Lambert law 

 

 

 

 

 
 

 

A: Absorbance: It is proportional to the concentration (or 
number density) 

 

 If the concentration is expressed in moles/L the molar extinction 
coefficient (ε) is used in L·mol−1·cm−1 sometimes in converted SI units 
of m2·mol−1. 

 

 e is characteristic for a molecule and a transition: How is it related to 
the wavefunctions of a molecule? 
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radiation density 1
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Einstein coefficients 

In thermal equilibrium: 

total rate of emission = 

total rate of absorption 

Rate of change of population Nn of state n 

Nn , En 

Nm , Em 
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Einstein coefficient of stimulated absorption 

Relation between Einstein coefficients and wave functions 
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may be found experimentally in the case of an absorption experiment nmB

Transition rate 

Transition dipole moment 



Absorption cross-section σ =  

 “ probability of absorption of a photon per molecule “ 

 

Beer-Lambert Law :  cl
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Transition dipole moment and intensity of 

vibrational bands 
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Intensity (selection rules) I 

When is a vibration infrared active? 
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Intensity (selection rules) II 
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Y1 and Y2 are the ground and excited state wavefunctions,  is the  dipole 

moment operator and integration is over all space. The integral can only be non 

zero if the function being integrated has a totally symmetric component within the 

point group of the molecule. 

 transforms like the functions x, y and z. This means that we can observe an IR 

transition when the excited state wavefunction belongs to the same irreducible 

representation as either x, y or z.  

At this point group theory comes into play! 



Symmetry / Group theory 

What is the difference? 



Harmonic Oscillator 
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What can we learn from spectroscopy? 

• Identify species 

• Quantify 

• Structure determination 

• Orientation 

• Interactions 

•„Imaging“ 

•  

•  

•  

 



Infrared spectroscopy of adsorbates 
(IR spectroscopy of interfaces) 

•ATR-IR spectroscopy 

•Orientation measurements 

•Case studies 



ATR-IR spectroscopy 

flow-through cell 

Internal reflection element (IRE) 

detector source 

inlet outlet 
catalyst 

ATR: Attenuated 

total reflection 



flow-through cell 

Internal reflection element (IRE) 

detector source 

inlet outlet 
catalyst 

solution 

ATR-IR spectroscopy 



Electric field at interface for ATR 
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z: distance from the interface 

 

dp: Penetration depths (typically on the order of 

a m in the IR). Distance from interface where 

the electric field has decayed to 1/e of its value 

E0 at the interface 

 

1: Wavelength in medium 1 

 

n21=n2/n1: Refractive indices of internal 

refelection element (IRE) and sample 

 

Q: Angle of incidence 
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Orientation measurements 

   

• Make use of polarized light 

• For flat (model) systems 

• Usually no net orientation for powder 

samples 

Catalyst 
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Heterogeneous enantioselective hydrogenation of 

-functionalized ketones 

(case study) 

-ketoester 

-hydroxyester 

( R )  

( S )  

Orito et al., 1979 
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Heterogeneous enantioselective catalysis 

metal catalyst 

chiral modifier 

• Structure of the active site? 

– How does the chiral modifier 

adsorb on the catalyst surface? 

In situ ATR spectroscopy 

Why in situ? 



0.1×10-5 M 

• Adsorption mode 

depends on coverage 

•Competition with 

solvent for adsorption 

sites 
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0.2×10-5 M 

0.4×10-5 M 

0.6×10-5 M 

1.0×10-5 M 

1.9×10-5 M 

2.8×10-5 M 

CD 

concentration 

0.001 

N 

HO 
N 

D. Ferri, T. Bürgi, J. Am. Chem. Soc. 123, 12074 (2001) 
 

Cinchonidine (CD) adsorption on Pt/Al2O3 film 
10°C; H2-saturated CH2Cl2 



Metall 

E field 

Metall 

E    
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Determination of the orientation of an adsorbate on a 

metal surface 



1510 / 1530 cm-1 1569 cm-1 

Quantum chemical calculations 

Orientation of dynamic dipole moment  associated with 

a vibrational mode 
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•Low coverage 

•Strongly adsorbed 

•Strongly adsorbed 

•High coverage 

•Weakly adsorbed 

•N lone pair bonded 

N 

N 

H 
O H 

 

 

N 

O H 
H 

N H 1700 1600 1500 1400 1300 

  

  

Wavenumber / cm-1 

A
b
s
o
rb

a
n
c
e

 

 

 

10-6 M 

10-4 M 

Neat solvent 

after 10-4 M 
0.001 

Summary: Adsorption of cinchonidine on Pt 



Metal surface selection rule: Ethylidyne on Pt 

Comparison between IRRAS and EELS 

IRRAS EELS: a) specular; b) off specular 



Self-assembly of N-acetyl-L-cysteine on gold 

HNHS

O

HO

O

N-acetyl-L-cysteineN-acetyl-L-cysteine (NALC) 

Infrared spectrum of dissolved NALC  

calculated 

measured 



Self-assembly of N-acetyl-L-cysteine on gold 

dissolved 

adsorbed on gold 

random 

oriented 



Investigation of Self-Assembled Monolayers 

Orientation measurements 
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Self-assembly of N-acetyl-L-cysteine on gold 

random 

oriented 

Effect of orientation on the spectrum 



Self-assembly of N-acetyl-L-cysteine on gold 

dissolved 

adsorbed on gold 

Orientation of NALC on gold 
(at the beginning of adsorption) 


