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ergy Levels, employed in this collaborative effort for collecting and
critically evaluating experimental transition wavenumbers and uncer-
tainties and for converting the wavenumbers to the best possible en-

ergy levels with uncertainties, is based on the concept of spectroscopic
networks (SN).* MARVEL is similar to the X-matrix method® and the

Active Thermochemical Tables (ATcT) approach.® MARVEL contains
an iterative robust reweighting scheme’ and it simultaneously pro-
cesses all the available assigned experimental lines and the associated
energy levels for the chosen isotopologue.

Our plans for the near future include:

e active maintainance of the IUPAC information system
e extension to mtensities

e use of MARVEL energy levels, and the associated protocols, to pro-
vide new semiautomatic assignment techniques

SOME TECHNICAL DETAILS

e contains a thorough and detailed test facility (pre-MARVEL) in
order to cleanse the assembled dataset
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