High resolution terahertz and far-infrared spectroscopy of SOCl₂ M. A. Martin-Drumel^a, A. Cuisset^a, G. Mouret^a, F. Hindle^a, and O. Pirali^b ^a Laboratoire de Physico-Chimie de l'Atmosphère, EA 4493, Université du Littoral Côte d'Opale, 59140 Dunkerque, France, E-mail: marie-aline.martin@univ-littoral.fr, arnaud.cuisset@univ-littoral.fr ^b Institut des Sciences Moléculaires d'Orsay, CNRS, UMR 8214, Université Paris XI, bat. 210, 91405 Orsay Cedex, France; SOLEIL Synchrotron, AILES beamline, L'orme des Merisiers, Saint-Aubin, 91192 Gif-Sur-Yvette, France Thionyl chloride (SOCl₂) is an extremely powerful oxidant widely used in industrial processes and playing a role in the chemistry of the atmosphere [1]. In addition, it is of particular interest for security and defense applications. Low resolution vibrational spectra of gas phase SOCl₂ [2] as well as high resolution pure rotational transitions up to 25 GHz [3] have previously been investigated. To date no high resolution data are reported at frequencies higher than 25 GHz. We have investigated the THz absorption spectrum of $SOCl_2$ in the spectral region 70-650 GHz using a frequency multiplier chain coupled to a 1 m long single path cell containing a pressure of about 15 µbar of the molecule. On this spectrum transitions of both $SO^{35}Cl^{35}Cl$ and $SO^{35}Cl^{37}Cl$ isotologues have been observed. 15993 pure rotational transitions of the main isotopologue $SO^{35}Cl^{35}Cl$ have been assigned up to J_{max} =127 and Ka_{max} =64. 13708 pure rotational transitions of $SO^{35}Cl^{37}Cl$ have also been observed with J_{max} =117 and Ka_{max} =65. Effective molecular parameters have been obtained for these two isotopologues using the SPFIT/SPCAT suite [4]. We also have recorded the high resolution FIR spectra of SOCl₂ in the spectral range 50-700 cm⁻¹ using synchrotron radiation at the AILES beamline of SOLEIL facility. A White-type cell aligned with an absorption path length of 150 m has been used to record, at a resolution of 0.001 cm⁻¹, two spectra at pressures of 5 and 56 μ bar of SOCl₂. On these spectra four FIR modes of SO³⁵Cl₂ are observed (v_2 , v_3 , v_5 and v_6) and present a resolved rotational structure. Their analysis has been realized using accurate ground state molecular parameters derived from our new pure rotational measurements and MP2/6-311⁺⁺G(3df,3pd) anharmonic calculations. - [1] T. J. Johnson et al., J. Phys. Chem. A 107, 6183 (2003) - [2] D. E. Martz and R. T. Lagemann, *J. Chem. Phys.* 22,1193 (1954) - [3] H. S. P. Müller and M. C. L. Gerry, J. Chem. Soc. Faraday Trans. 90, 3473 (1994) - [4] H. M. Pickett, J. Mol. Spectrosc. 148 (1991)