On the Improvement of the Rotational Structure of the ¹³CH₃D Ground Vibrational State

O. N. Ulenikov^{*a,b*}, E. S. Bekhtereva^{*a,b*}, Yu. V. Krivchikova^{*b*}, I. A. Konov^{*b*}, and V.-M. Horneman^{*c*}

^{*a*}Department of General Physics, Institute of Physics and Technology, National Research Tomsk Polytechnic University, Tomsk, 634050, Russia; ^{*b*} Physics Department, Tomsk State University, 634050, Tomsk, Russia; Tel.: +79138865074, E-mail: <u>lane@phys.tsu.ru</u>; ^{*c*} Department of Physics, University of Oulu, P.O. Box 3000, FIN-90014 University of Oulu, Finland

The main goal of the present study was to improve the already published rotational structure analysis of the ground vibrational state of the ¹³CH₃D molecule. To realize that, we recorded high-resolution spectra of a set of the strongly interacting vibrational bands, $2v_3(A_1)$, $2v_6(A_1)$, $2v_6(E)$, $v_2(A_1)$, $v_5+v_6(A_1)$, $v_5+v_6(A_2)$, and $v_3+v_6(E)$. From the analysis of the experimental data, more than 1900 ground state combination differences (GSCD) were determined with $J^{\text{max}}=18$, $\Delta J^{\text{max}}=2$ and $K^{\text{max}}=15$. The a_1/a_2 splittings of the states with quantum number K=3 were taken into account. The presence of numerous forbidden transitions allowed us to determine with high accuracy GSCD not only with $\Delta K=0$, but with $\Delta K=\pm 1$, ± 2 and ± 3 , as well. Spectroscopic parameters of the ground vibrational state were determined from the joint fit of the obtained GSCD (they are reproduced with $d_{\text{rms}}=0.00014 \text{ cm}^{-1}$). The 21 highly accurate THz-region transitions which were also used as input data, are reproduced with $d_{\text{rms}}=47 \text{ kHz}$.