SF₆: The forbidden band unveiled V. Boudon^a, L. Manceron^{b,d}, F. Kwabia-Tchana^c, P. Roy^d ^a Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS–Université de Bourgogne, 9 Av. A. Savary, BP 47870, F-21078 Dijon Cedex, France, Tel.: +33 3 80 39 59 17, E-mail: Vincent.Boudon@u-bourgogne.fr ^b Laboratoire de Dynamique, Interactions et Réactivité, CNRS UMR 7075, 4 Place Jussieu, F-75252 Paris Cedex, France. Tel.: +33 1 69 35 97 41, E-mail: laurent.manceron@synchrotron-soleil.fr ^c Laboratoire Interuniversitaire des Systèmes Atmosphériques, CNRS UMR 7583, Université Paris-Est Créteil et Université Paris-Diderot, 61 Avenue du Général de Gaulle, 94010 Créteil Cedex, France, Tel.: +33 11 45 17 15 29, E-mail: fridolin.kwabia@lisa.u-pec.fr d Ligne AILES -- Synchrotron SOLEIL, L'Orme des Merisiers, F-91192 Gif-sur-Yvette, France, Tel.: +33 1 69 35 96 57, E-mail: pascale.roy@synchrotron-soleil.fr Sulfur hexafluoride (SF₆) is a greenhouse gas of anthropogenic origin, whose strong infrared absorption in the v₃ S-F stretching region near 948 cm⁻¹ induces a global warming potential 23900 times bigger than CO₂. This heavy species features many hot bands at room temperature (at which the ground state population is only 30 %), especially those originating from the ν_6 =1 state. Unfortunately, the ν_6 band itself (near 347 cm⁻¹) being, in first approximation, both infrared and Raman inactive, no reliable information could be obtained about it up to now. A long time ago, some authors suggested [1,2] that this band may be slightly activated through a Coriolis interaction and may appear as a very faint band, with an integrated intensity about 2 millionths of that of v₃. Using a new cryogenic multiple pass cell with 93 m optical path length and regulated at 165±2 K temperature, we recorded a spectrum of the v_6 far-infrared region thanks to the performances of the AILES Beamline at the SOLEIL French synchrotron facility. Low temperature was used to avoid the presence of the $2v_6-v_6$ hot band and to reduce the neighboring, stronger v_3-v_2 difference band. We are thus able to confirm that the small feature in this region, previously viewed at low-resolution is indeed v₆. We present its fully resolved spectrum. It appears to be activated thanks to unidentified faint interactions resulting in the presence of a first-order dipole moment term that induces unusual selection rules. This spectrum was analyzed thanks to the XTDS software package [3], leading to accurate molecular spectroscopic parameters that should be useful to model the hot bands of SF₆. Detail in the R branch of the V₆ band. ^[1] W. B. Person, B. J. Krohn, J. Mol. Spectrosc. 1983, 98, 229–257. ^[2] C. Chappados, G. Birnbaum, J. Mol. Spectrosc. 1984, 105, 206-214. ^[3] Ch. Wenger, V. Boudon, M. Rotger, M. Sanzharov, J.-P. Champion, *J. Mol. Spectrosc.* **2008**, 251, 102–113.