Population Transfer and Ultrahigh Resolution Spectroscopy in Ammonia : First Steps to Detect Parity Violation in Chiral Molecules

Peter Dietiker, Eduard Milogyadov, Martin Quack, Andreas Schneider, and Georg Seyfang

Phys. Chem. Lab., ETH Zürich, Wolfgang Pauli Strasse 10, 8093 Zürich, Switzerland, seyfang@phys.chem.ethz.ch

According to our current understanding, the symmetry between the two enantiomers of chiral molecules is broken by the electroweak interaction and a slight energy difference $\Delta_{PV}E$ of the ground states of enantiomers is introduced, corresponding to a reaction enthalpy $\Delta_{PV}H_0^{\text{e}}$ for the stereomutation reaction [1-4]

$$R = S, \qquad \Delta_{PV} H_0^{\theta} = N_A \Delta_{PV} E \qquad (1)$$

Theoretical calculations of the parity violating energy difference in molecules are well established [2-5] but its experimental verification is still missing. We present an experimental scheme and the first experimental results for an approach where the time evolution of the population is probed for a superposition state which has been prepared with defined parity in a two-photon absorption-stimulated emission step [1]. In a first step we have investigated the population transfer in achiral NH₃ by two continuous wave IR-OPOs locked to a frequency comb with high frequency precision. Applying chirped laser fields a complete population transfer for each step could be confirmed experimentally in accordance with theoretical calculations taking into account the hyperfine structure of the transitions. In a high resolution experiment we have completely resolved the hyperfine structure of the v_1 transition in NH₃.

[1] M.Quack, Chem. Phys. Lett. **132**, 147 (1986). [2] A.Bakasov, T.K.Ha, and M.Quack, J.Chem.
Phys. **109**, 7263 (1998). R.Berger and M.Quack, J.Chem.Phys. **112**, 3148 (2000). [3] L.Horny and
M.Quack, Farad. Discuss. Chem. Soc. **150**, 152 (2011). [4] M.Quack and J.Stohner, Phys. Rev.
Lett. **84**, 3807 (2000), [5] M.Quack, in Handbook of High-resolution Spectroscopy, Vol.1, pages
659 – 722, M.Quack and F.Merkt (eds.), Wiley, Chichester (2011)