Potential energy surface and rotational-vibrational dynamics of the F⁻-CH₄ anion complex

G. Czakó^a, B. J. Braams^b, J. M. Bowman^b, C. Fábri^a, A. G. Császár^a

^a Eötvös University, Budapest, Hungary, E-mail: czako@chem.elte.hu ^b Emory University, Atlanta, GA, USA

The F^- -CH₄ anion complex has a single hydrogen-bonded C_{3v} equilibrium structure and our best ab*initio* predictions for its D_e and D_0 values are 2398 \pm 12 and 2280 \pm 20 cm⁻¹, respectively [1]. We developed a full-dimensional potential energy surface (PES) for F⁻-CH₄ based on a permutationally invariant fit to CCSD(T)/aug-cc-pVTZ energy points [1]. F^- CH₄ has been recently used as a precursor in novel photodetachment spectroscopy to investigate the transition state region of the corresponding neutral system. Experiment found a substantially larger splitting (1310 cm⁻¹) in the spectrum of F^--CH_4 than the well-known spin-orbit splitting (404 cm⁻¹) of the F atom, in good agreement with our theoretical prediction [2]. We computed the vibrational spectrum of F-CH₄ using the MULTIMODE code and our full-dimensional ab initio PES [1]. Experimental data are available in the CH stretching region and the MULTIMODE results [1] are in good agreement with the measured spectrum. Recently we performed reduced-dimensional quantum rotational-vibrational computations for the F^--CH_4 and $F^--CH_2D_2$ complexes in a polyspherical coordinate system using the GENIUSH code [3,4] and the ab initio PES [5]. A one-dimensional CF stretch, $1D(R_{CF})$, a twodimensional intermolecular bend, $2D(\theta, \varphi)$, and a three-dimensional intermolecular, $3D(R_{CF}, \theta, \varphi)$, rigid methane model provided vibrational energies for the low-frequency, large-amplitude modes in good agreement with full-dimensional MCTDH results for F⁻-CH₄. The 2D(θ , φ) and 3D(R_{CF} , θ , φ) fourwell computations, describing equally the four possible CH-F- bonds, showed that the ground-state tunneling splitting is less than $0.01~{\rm cm}^{-1}$. For the hydrogen-bonded CH stretching fundamental a local-mode model was found to have almost spectroscopic accuracy [5]. The 2D(θ , φ) and $3D(R_{CF}, \theta, \varphi)$ rotational-vibrational computations on the T_d -symmetric four-well PES revealed that in most cases F^-CH_4 behaves as a semi-rigid C_{3v} symmetric top [5]. For the degenerate intermolecular bending vibrational states substantial splittings of the rigid rotor levels were observed. For F⁻-CH₂D₂ the rotational levels guided the assignment of the vibrational states to either F-H or F-D connectivity [5].

^[1] G. Czakó, B. J. Braams, J. M. Bowman, J. Phys. Chem. A 2008, 112, 7466.

^[2] M. Cheng, Y. Feng, Y. Du, Q. Zhu, W. Zheng, G. Czakó, J. M. Bowman, *J. Chem. Phys.* **2011**, *134*, 191102.

^[3] E. Mátyus, G. Czakó, A. G. Császár, J. Chem. Phys. 2009, 130, 134112.

^[4] C. Fábri, E. Mátyus, A. G. Császár, J. Chem. Phys. 2011, 134, 074105.

^[5] C. Fábri, A. G. Császár, G. Czakó, J. Phys. Chem. A 2013, DOI: 10.1021/jp312160n.