A computed line list for hot H₂CO

A. F. Al-Refaie, S. N. Yurchenko, J. Tennyson, A. Yachmenev

Department of Physics and Astronomy University College London, Gower Street, London WC1E 6BT , UK E-mail: ahmed.al-refaie.12@ucl.ac.uk

The aim of Exomol project [1] is to produce a comprehensive database of spectroscopic data of molecules relevant towards the characterisation and modelling of (exo)planets and cool stars. The work here presents our most recent addition to the Exomol project; a preliminary line-list of around 3 billion transitions for hot formaldehyde covering frequencies up to 9600 cm⁻¹. This was produced using the variational ro-vibrational solver TROVE [2] using an empirical potential energy surface [3] and a new *ab-initio* dipole moment surface. Computation of high rotational excitations (J up to 70)

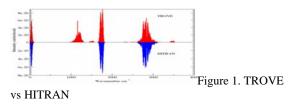


Figure 1. TROVE Figure 1. TROVE

Acknowledgements

This work was supported by the ERC under Advanced Investigator Project 267219.

[1] J. Tennyson and S. N. Yurchenko, Mon. Not. Roy. Astron. Soc. 2012, 425, 21–33.

[2] S. N. Yurchenko, W. Thiel, and P. Jensen, J. Mol. Spectros. 2007, 245,126–140.

[3] A. Yachmenev, S. N. Yurchenko, P. Jensen, and W. Thiel. *J. Chem. Phys.* **2011**, *134*, 11.

[4] A. Perrin, D. Jacquemart, F. Kwabia Tchana, and N. Lacome, *JQSRT* **2009**, *110*, 700-716.

[5] H.S.P. Müller, F. Schloder, J. Stutzki, and G Winnewisser, *J. Mol. Struct* **2005**, *742*, 215-227.

[6] D. C. Reuter, S. Nadler, S. J. Daunt, and J. W. C. Johns, J. Chem. Phys 1989, 91, 646