## Temperature dependence of ${\rm CH_3}^{35}{\rm Cl}$ and ${\rm CH_3}^{37}{\rm Cl}$ air-broadening coefficients by a semi-classical approach

## J. Buldyreva

Institut UTINAM UMR CNRS 6213, Université de Franche-Comté, 16 Route de Gray, 25030 Besançon, France; jeanna.buldyreva@univ-fcomte.fr

Methyl chloride  $CH_3CI$  is known as the main source of chlorine ions in the Earth's atmosphere. These ions are important catalysts of chemical reactions leading to the depletion of the stratospheric ozone layer. As a consequence, a precise knowledge of  $CH_3CI$  line widths and shifts due to the main atmospheric perturbers  $N_2$  and  $O_2$  is of a crucial importance for atmospheric studies. These data are required for various spectral regions (various bands) and for wide temperature ranges. Unfortunately, no direct air-broadening measurements have been performed up to now even at room temperature and the detailed information about the temperature-dependence of air-broadening and shifting  $CH_3CI$  coefficients is missing in main spectroscopic databases.

The present work reports air-broadening coefficients at 296 K and corresponding temperature-dependence exponents semi-classically calculated for  $CH_3^{35}CI$  and  $CH_3^{37}CI$  (vib)rotational transitions  $(0 \le J \le 70, 0 \le K \le 20)$  in order to provide the required data.

In contrast with previous calculations by other authors, the active molecule is rigorously treated as a symmetric top, long- as well as short-range interactions are accounted for, and exact classical trajectories are employed to describe the relative motion of colliders. This approach, already validated on extensive room-temperature measurements for the  $CH_3^{35}CI-O_2$  and  $CH_3^{35}CI-O_2$  systems [1–3], yields quite realistic estimations of  $N_2$ - and  $O_2$ - broadening temperature exponents, so that line widths calculated for 203 K compare very favorably with available experimental data [4]. Successful testing on  $N_2$ - and  $O_2$ -broadening data ensures the reliability of the reported values for  $CH_3CI$ -air in the interval of atmospheric interest 200–300 K [5].

<sup>[1]</sup> J. Buldyreva, M. Guinet, S. Eliet, F. Hindle, G. Mouret, R. Bocquet, A. Cuisset, *PCCP* **2011**, *13*, 20326.

<sup>[2]</sup> M. Guinet, F. Rohart, J. Buldyreva, V. Gupta, S. Eliet, R.A. Motiyenko, L. Margulès, A. Cuisset, F. Hindle, G. Mouret, *JQSRT* **2012**, *113*, 1113.

<sup>[3]</sup> C. Bray, D. Jacquemart, J. Buldyreva, N. Lacome, A. Perrin, JQSRT 2012, 113, 1102.

<sup>[4]</sup> J.-P. Bouanich, G. Blanquet, J.-C. Populaire, J. Walrand, J. Mol. Spectrosc. 2001, 208, 72.

<sup>[5]</sup> J. Buldyreva, JQSRT **2013** (in press); DOI: 10.1016/j.jqsrt.2013.04.003.