Temperature dependence of ${\rm CH_3}^{35}{\rm Cl}$ and ${\rm CH_3}^{37}{\rm Cl}$ air-broadening coefficients by a semi-classical approach ## J. Buldyreva Institut UTINAM UMR CNRS 6213, Université de Franche-Comté, 16 Route de Gray, 25030 Besançon, France; jeanna.buldyreva@univ-fcomte.fr Methyl chloride CH_3CI is known as the main source of chlorine ions in the Earth's atmosphere. These ions are important catalysts of chemical reactions leading to the depletion of the stratospheric ozone layer. As a consequence, a precise knowledge of CH_3CI line widths and shifts due to the main atmospheric perturbers N_2 and O_2 is of a crucial importance for atmospheric studies. These data are required for various spectral regions (various bands) and for wide temperature ranges. Unfortunately, no direct air-broadening measurements have been performed up to now even at room temperature and the detailed information about the temperature-dependence of air-broadening and shifting CH_3CI coefficients is missing in main spectroscopic databases. The present work reports air-broadening coefficients at 296 K and corresponding temperature-dependence exponents semi-classically calculated for $CH_3^{35}CI$ and $CH_3^{37}CI$ (vib)rotational transitions $(0 \le J \le 70, 0 \le K \le 20)$ in order to provide the required data. In contrast with previous calculations by other authors, the active molecule is rigorously treated as a symmetric top, long- as well as short-range interactions are accounted for, and exact classical trajectories are employed to describe the relative motion of colliders. This approach, already validated on extensive room-temperature measurements for the $CH_3^{35}CI-O_2$ and $CH_3^{35}CI-O_2$ systems [1–3], yields quite realistic estimations of N_2 - and O_2 - broadening temperature exponents, so that line widths calculated for 203 K compare very favorably with available experimental data [4]. Successful testing on N_2 - and O_2 -broadening data ensures the reliability of the reported values for CH_3CI -air in the interval of atmospheric interest 200–300 K [5]. ^[1] J. Buldyreva, M. Guinet, S. Eliet, F. Hindle, G. Mouret, R. Bocquet, A. Cuisset, *PCCP* **2011**, *13*, 20326. ^[2] M. Guinet, F. Rohart, J. Buldyreva, V. Gupta, S. Eliet, R.A. Motiyenko, L. Margulès, A. Cuisset, F. Hindle, G. Mouret, *JQSRT* **2012**, *113*, 1113. ^[3] C. Bray, D. Jacquemart, J. Buldyreva, N. Lacome, A. Perrin, JQSRT 2012, 113, 1102. ^[4] J.-P. Bouanich, G. Blanquet, J.-C. Populaire, J. Walrand, J. Mol. Spectrosc. 2001, 208, 72. ^[5] J. Buldyreva, JQSRT **2013** (in press); DOI: 10.1016/j.jqsrt.2013.04.003.